Skip to main content
Log in

Effect of tube diameter and capillary number on platelet margination and near-wall dynamics

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

I investigate the effect of tube diameter D and red blood cell capillary number C a (i.e. the ratio of viscous to elastic forces) on platelet margination in blood flow at ≈37 % tube haematocrit. The system is modelled as three-dimensional suspension of deformable red blood cells and nearly rigid platelets using a combination of the lattice-Boltzmann, immersed boundary and finite element methods. Results of simulations during the dynamics before the steady state has been reached show that a non-diffusive radial platelet transport facilitates margination. This non-diffusive effect is important near the edge of the cell-free layer, but only for C a > 0.2, when red blood cells are tank-treading. I also show that platelet trapping in the cell-free layer is reversible for C a ≤ 0.2. Margination is essentially independent of C a only for the smallest investigated tube diameter (D = 10 μm). Once platelets have reached the cell-free layer, they tend to slide rather than tumble. The tumbling rate is essentially independent of C a but increases with D. Strong confinement suppresses tumbling due to the relatively small cell-free layer thickness at ≈ 37 % tube haematocrit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aarts PA, Bolhuis PA, Sakariassen KS, Heethaar RM, Sixma JJ (1983) Red blood cell size is important for adherence of blood platelets to artery subendothelium. Blood 62(1):214

    Google Scholar 

  • Aarts PA, Heethaar RM, Sixma JJ (1984) Red blood cell deformability influences platelets-vessel wall interaction in flowing blood. Blood 64(6):1228

    Google Scholar 

  • Aarts PA, SAvd Broek, Prins GW, Kuiken GDC, Sixma JJ, Heethaar RM (1988) Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscl Throm Vas 8(6):819–824

    Article  Google Scholar 

  • Aidun CK, Clausen JR (2010) Lattice-boltzmann method for complex flowzs. Annu Rev Fluid Mech 42:439–472

    Article  Google Scholar 

  • AlMomani T, Udaykumar HS, Marshall JS, Chandran KB (2008) Micro-scale Dynamic Simulation of Erythrocyte-Platelet Interaction in Blood Flow. Ann Biomed Eng 36(6):905–920

    Article  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. i. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511–525

    Article  Google Scholar 

  • Bilsker DL, Waters CM, Kippenhan JS, Eckstein EC (1989) A freeze-capture method for the study of platelet-sized particle distributions. Biorheology 26(6):1031

    Google Scholar 

  • Breugel HFV, Groot PGD, Heethaar RM, Sixma JJ (1992) Role of plasma viscosity in platelet adhesion. Blood 80(4):953

    Google Scholar 

  • Cadroy Y, Hanson SR (1990) Effects of red blood cell concentration on hemostasis and thrombus formation in a primate model. Blood 75(11):2185

    Google Scholar 

  • Charrier J, Shrivastava S, Wu R (1989) Free and constrained inflation of elastic membranes in relation to thermoforming—non-axisymmetric problems. J Strain Anal Eng 24(2):55–74

    Article  Google Scholar 

  • Crowl LM, Fogelson AL (2010) Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int J Numer Meth Biomed Engng 26:471–487

    Article  Google Scholar 

  • Doddi SK, Bagchi P (2009) Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys Rev E 79(4):046,318

    Article  Google Scholar 

  • Doggett TA, Girdhar G, Lawshé A, Schmidtke DW, Laurenzi IJ, Diamond SL, Diacovo TG (2002) Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIb [alpha]-vWF tether bond. Biophys J 83(1):194–205

    Article  Google Scholar 

  • Dupin MM, Halliday I, Care CM, Alboul L, Munn LL (2007) Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys Rev E 75(6):066,707

    Article  Google Scholar 

  • Eckstein EC, Belgacem F (1991) Model of platelet transport in flowing blood with drift and diffusion terms. Biophys J 60(1):53–69

    Article  Google Scholar 

  • Eckstein EC, Tilles AW, Millero FJ, et al. (1988) Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc Res 36(1):31–39

    Article  Google Scholar 

  • Eckstein EC, Koleski JF, Waters CM (1989) Concentration profiles of 1 and 2.5 micrometer beads during blood flow: hematocrit effects. T Am Soc Art Int Org 35:188–190

    Article  Google Scholar 

  • Eggleton CD, Popel AS (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10(8):1834–1845

    Article  Google Scholar 

  • Evans E (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14 (12):923–931

    Article  Google Scholar 

  • Evans E, Fung YC (1972) Improved measurements of the erythrocyte geometry. Microvasc Res 4(4):335–347

    Article  Google Scholar 

  • Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC

  • Fedosov DA, Pan W, Caswell B, Gompper G, Karniadakis GE (2011) Predicting human blood viscosity in silico. Proc Natl Acad Sci USA 108(29):11,772–11,777

    Article  Google Scholar 

  • Fedosov DA, Noguchi H, Gompper G (2014a) Multiscale modeling of blood flow: from single cells to blood rheology. Biomech Model Mechanobiol 13(2):239–258. doi:10.1007/s10237-013-0497-9

    Article  Google Scholar 

  • Fedosov DA, Peltomäki M, Gompper G (2014b) Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10(24):4258–4267

    Article  Google Scholar 

  • Fåhræus R, Lindqvist T (1931) The viscosity of blood in narrow capillary tubes. Am J Physiol 96:562–568

    Google Scholar 

  • Fogelson AL, Guy RD (2008) Immersed-boundary-type models of intravascular platelet aggregation. Comput Methods Appl Mech Engrg 197(25-28):2087–2104

    Article  Google Scholar 

  • Fogelson AL, Neeves KB (2015) Fluid mechanics of blood clot formation. Annu Rev Fluid Mech 47 (1):377–403

    Article  Google Scholar 

  • Freund JB (2014) Numerical simulation of flowing blood cells. Ann Rev Fluid Mech 46(1):67–95

    Article  Google Scholar 

  • Frijters S, Krüger T, Harting J (2015) Parallelised Hoshen-Kopelman algorithm for lattice-Boltzmann simulations. Comput Phys Commun 189:92–98

    Article  Google Scholar 

  • Goldsmith HL (1971) Red cell motions and wall interactions in tube flow. Fed Proc 30:1578–1588

    Google Scholar 

  • Goldsmith HL, Mason SG (1967) The microrheology of dispersions. In: Rheology: Theory and Application, Academic Press, vol 4, pp 85–250

  • Goldsmith HL, Turitto VT (1986) Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on rheology of the international committee on thrombosis and haemostasis. Thromb Haemostasis 55(3):415– 435

    Google Scholar 

  • Gompper G, Schick M (2008) Soft Matter: Lipid Bilayers and Red Blood Cells. Wiley-VCH

  • Gross M, Krüger T, Varnik F (2014) Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects. Soft Matter 10(24):4360–4372. doi:10.1039/C4SM00081A

    Article  Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. P Roy Soc Lond A Mat 102 (715):161–179

    Article  Google Scholar 

  • Joist JH, Bauman JE, Sutera SP (1998) Platelet adhesion and aggregation in pulsatile shear flow: effects of red blood cells. Thromb Res 92(6):S47–S52

    Article  Google Scholar 

  • Katanov D, Gompper G, Fedosov DA (2015) Microvascular blood flow resistance: Role of red blood cell migration and dispersion. Microvasc Res 99:57–66. doi:10.1016/j.mvr.2015.02.006

    Article  Google Scholar 

  • Krüger T (2011) Computer simulation study of collective phenomena in dense suspensions of red blood cells under shear. Dissertation, Ruhr University Bochum, Bochum

  • Krüger T, Varnik F, Raabe D (2011) Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice boltzmann finite element method. Comput Math Appl 61:3485–3505

    Article  Google Scholar 

  • Krüger T, Gross M, Raabe D, Varnik F (2013) Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9(37):9008–9015

    Article  Google Scholar 

  • Krüger T, Holmes D, Coveney PV (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices—A simulation study. Biomicrofluidics 8(5):054,114

    Article  Google Scholar 

  • Kulkarni S, Dopheide SM, Yap CL, Ravanat C, Freund M, Mangin P, Heel KA, Street A, Harper IS, Lanza F, et al. (2000) A revised model of platelet aggregation. J Clin Invest 105(6):783– 791

    Article  Google Scholar 

  • Kumar A, Graham MD (2012a) Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter 8(41):10,536–10,548

    Article  Google Scholar 

  • Kumar A, Graham MD (2012b) Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett 109(10):108,102

    Article  Google Scholar 

  • Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–309

    Article  Google Scholar 

  • Lei H, Fedosov DA, Caswell B, Karniadakis GE (2013) Blood flow in small tubes: quantifying the transition to the non-continuum regime. J Fluid Mech 722:214–239

    Article  Google Scholar 

  • MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK (2009) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39

    Article  Google Scholar 

  • McWhirter JL, Noguchi H, Gompper G (2009) Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. P Natl Acad Sci 106(15):6039–6043

    Article  Google Scholar 

  • Müller K, Fedosov DA, Gompper G (2014) Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep:4

  • Peerschke EIB, Silver RT, Weksler B, Grigg SE, Savion N, Varon D (2004) Ex vivo evaluation of erythrocytosis-enhanced platelet thrombus formation using the cone and plate (let) analyzer: effect of platelet antagonists. Br J Haematol 127(2):195–203

    Article  Google Scholar 

  • Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion. Sue Golding Graduate Division of Medical Sciences, Albert Einstein College of Medicine, Yeshiva University

  • Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517

    Article  Google Scholar 

  • Qian YH, d’Humières D, Lallemand P (1992) Lattice BGK models for navier-stokes equation. Europhys Lett 17:479–484

    Article  Google Scholar 

  • Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143

    Article  Google Scholar 

  • Reasor DA, Mehrabadi M, Ku DN, Aidun CK (2013) Determination of critical parameters in platelet margination. Ann Biomed Eng 41(2):238–249

    Article  Google Scholar 

  • Robertson A, Sequeira A, Kameneva M (2007) Hemorheology. In: Hemodynamical Flows, Oberwolfach Seminars, Birkhäuser Basel, pp 63–120

  • Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13–137

    Article  Google Scholar 

  • Shan X, Chen H (1993) Lattice boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47(3): 1815

    Article  Google Scholar 

  • Shrivastava S, Tang J (1993) Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J Strain Anal Eng 28(1):31–51

    Article  Google Scholar 

  • Skalak R, Branemark PI (1969) Deformation of red blood cells in capillaries. Science 164(3880):717–719

    Article  Google Scholar 

  • Skalak R, Tozeren A, Zarda RP, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13(3):245– 264

    Article  Google Scholar 

  • Succi S (2001) The Lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press

  • Sui Y, Chew YT, Roy P, Low HT (2008) A hybrid method to study flow-induced deformation of three-dimensional capsules. J Comput Phys 227(12):6351–6371

    Article  Google Scholar 

  • Tangelder GJ, Slaaf DW, Teirlinck HC, Alewijnse R, Reneman RS (1982) Localization within a thin optical section of fluorescent blood platelets flowing in a microvessel. Microvasc Res 23(2):214–230

    Article  Google Scholar 

  • Teirlinck HC, Tangelder GJ, Slaaf DW, Muijtjens AMM, Arts T, Reneman RS (1984) Orientation and diameter distribution of rabbit blood platelets flowing in small arterioles. Biorheology 21(3):317–331

    Google Scholar 

  • Thompson AJ, Mastria EM, Eniola-Adefeso O (2013) The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 34(23):5863–5871

    Article  Google Scholar 

  • Tilles AW, Eckstein EC (1987) The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc Res 33(2):211–223

    Article  Google Scholar 

  • Turitto VT, Baumgartner HR (1975) Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res 9(3):335–344

    Article  Google Scholar 

  • Turitto VT, Baumgartner HR (1979) Platelet interaction with subendothelium in flowing rabbit blood: effect of blood shear rate. Microvasc Res 17(1):38–54

    Article  Google Scholar 

  • Turitto VT, Goldsmith HL (1992) Rheology, transport, and thrombosis in the circulation. Vascular Medicine: A Textbook of Vascular Biology and Diseases Boston, Mass: Little, Brown & Co

  • Turitto VT, Weiss HJ (1980) Red blood cells: their dual role in thrombus formation. Science 207(4430):541–543

    Article  Google Scholar 

  • Turitto VT, Benis AM, Leonard EF (1972) Platelet diffusion in flowing blood. Ind Eng Chem Fundam 11(2):216–223

    Article  Google Scholar 

  • Vahidkhah K, Diamond S, Bagchi P (2014) Platelet dynamics in three-dimensional simulation of whole blood. Biophys J 106(11):2529–2540

    Article  Google Scholar 

  • Waters CM, Eckstein EC (1990) Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers. Artif Organs 14(1):7–13

    Article  Google Scholar 

  • Yeh C, Eckstein EC (1994) Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophys J 66(5):1706–1716

    Article  Google Scholar 

  • Zhang J, Johnson PC, Popel AS (2007) An immersed boundary lattice boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys Biol 4(4):285–295

    Article  Google Scholar 

  • Zhao H, Shaqfeh ESG (2011) Shear-induced platelet margination in a microchannel. Phys Rev E 83 (6):061,924

    Article  Google Scholar 

  • Zhao R, Kameneva MV, Antaki JF (2007) Investigation of platelet margination phenomena at elevated shear stress. Biorheology 44(3):161–177

    Google Scholar 

Download references

Acknowledgments

I acknowledge the award of a Chancellor’s Fellowship from the University of Edinburgh and computer resources at Eindhoven University of Technology. I also thank the three anonymous reviewers for their constructive suggestions that led to an improved manuscript and Gary B. Davies for suggestions to improve the language. There is no conflict of interest. Figures have been created with TikZ and ParaView.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Krüger.

Additional information

This paper belongs to the special issue on the “Rheology of blood cells, capsules and vesicles”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krüger, T. Effect of tube diameter and capillary number on platelet margination and near-wall dynamics. Rheol Acta 55, 511–526 (2016). https://doi.org/10.1007/s00397-015-0891-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0891-6

Keywords

Navigation