Skip to main content
Log in

Padé approximants for large-amplitude oscillatory shear flow

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Analytical solutions for either the shear stress or the normal stress differences in large-amplitude oscillatory shear flow, both for continuum or molecular models, often take the form of the first few terms of a power series in the shear rate amplitude. Here, we explore improving the accuracy of these truncated series by replacing them with ratios of polynomials. Specifically, we examine replacing the truncated series solution for the corotational Maxwell model with its Padé approximants for the shear stress response and for the normal stress differences. We find these Padé approximants to agree closely with the corresponding exact solution, and we learn that with the right approximants, one can nearly eliminate the inaccuracies of the truncated expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Khalik SI, Hassager O, Bird RB (1974) The Goddard expansion and the kinetic theory for solutions of rodlike macromolecules. J Chem Phys 61:4312–4316

    Article  Google Scholar 

  • Ad Hoc Committee on Official Nomenclature and Symbols, (2013) The Society of Rheology, “Official symbols and nomenclature of The Society of Rheology”. J Rheol 57:1047

  • Akers LC, Williams MC (1969) Oscillatory normal stresses in dilute polymer solutions. J Chem Phys 51(9):3834–3841

    Article  Google Scholar 

  • Baker GA Jr (1975) Essentials of Padé approximants. Academic, New York

  • Bharadwaj NAK (2012) Low dimensional intrinsic material functions uniquely identify rheological constitutive models and infer material microstructure. Masters thesis, Mechanical Engineering, University of Illinois at Urbana-Champaign, IL

  • Bird RB (1972) A modification of the Oldroyd model for rigid dumbbell suspensions with Brownian motion. J Appl Math Phys 23:157–159

  • Bird RB, Giacomin AJ (2012) Who conceived the complex viscosity? Rheol Acta 51(6):481–486

    Article  Google Scholar 

  • Bird RB, Warner Jr. HR, Evans DC (1971) Kinetic theory and rheology of dumbbell suspensions with Brownian motion. Adv Poly Sci (or Fortschr. Hochpolymeren-Forschung) 8:1–89

  • Bird RB, Hassager O, Abdel-Khalik SI (1974) Co-rotational rheological models and the Goddard expansion. AIChE J 20:1041–1066

    Article  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1977a) Dynamics of polymeric liquids, vol 1, 1st edn. Wiley, New York

    Google Scholar 

  • Bird RB, Hassager O, Armstrong RC, Curtiss CF (1977b) Dynamics of polymeric liquids, vol 2, 1st edn. Wiley, New York, Erratum: In Problem 11.C.1 d., “and ϕ 2” should be “through ϕ 4

  • Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, revised 2nd ed. Wiley, New York

    Google Scholar 

  • Bird RB, Giacomin AJ, Schmalzer AM, Aumnate C (2014) Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: shear stress response. J Chem Phys 140:074904, Errata: In Eq. (91), η′ should be η″; In caption to Fig. 3, “Ψ 1[P 2 2 s 2]” should be “cos3ωt” and “Ψ 2[P 2 0 c 0,P 2 2 c 2,…]” should be “sin3ωt

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN, Klingenberg DJ (2015) Introductory transport phenomena. Wiley, New York

    Google Scholar 

  • Blackwell BC, Ewoldt RH (2014) A simple thixotropic–viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS). J Non-Newtonian Fluid Mech 208–209:27–41

    Article  Google Scholar 

  • Böhme G (1981) Strömungsmechanik nicht-newtonscher fluide. B.G. Teubner, Stuttgart

    Book  Google Scholar 

  • Bozorgi Y (2014) Multiscale simulation of the collective behavior of rodlike self-propelled particles in viscoelastic fluids. PhD thesis, Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY

  • Bozorgi Y, Underhill PT (2014) Large-amplitude oscillatory shear rheology of dilute active suspensions. Rheol Acta. doi:10.1007/s00397-014-0806-y

    Google Scholar 

  • Cho KS, Song K-W, Chang G-S (2010) Scaling relations in nonlinear viscoelastic behavior of aqueous PEO solutions under large amplitude oscillatory shear flow. J Rheol 54:27–63

    Article  Google Scholar 

  • Clemeur N, Rutgers RPG, Debbaut B (2003) On the evaluation of some differential formulations for the pom-pom constitutive model. Rheol Acta 42:217

    Google Scholar 

  • Cohen A (1991) A Padé approximant to the inverse Langevin function. Rheol Acta 30:270–273, Erratum: In Eq. (4), \( \frac{9}{5}\lambda \) should be \( \frac{9}{5}{\lambda}^3 \)

    Article  Google Scholar 

  • Davis WM, Macosko CW (1978) Nonlinear dynamic mechanical moduli for polycarbonate and PMMA. J Rheol 22:53–71

    Article  Google Scholar 

  • Dealy JM, Petersen JF, Tee T-T (1973) A concentric-cyclinder rheometer for polymer melts. Rheol Acta 12:550–558

    Article  Google Scholar 

  • Debbaut B, Burhin H (2002) Large amplitude oscillatory shear and Fourier-transform rheology for a high-density polyethylene: experiments and numerical simulation. J Rheol 46:1155

  • Fan X-J, Bird RB (1984) A kinetic theory for polymer melts VI. Calculation of additional material functions. J Non-Newtonian Fluid Mech 15:341–373

    Article  Google Scholar 

  • Gemant A (1935a) Komplexe Viskosität. Naturwissenschaften 25:406–407

    Article  Google Scholar 

  • Gemant A (1935) The conception of a complex viscosity and its application to dielectrics. Transactions of the Faraday Society, No. 175, XXXI, Part II, 1582–1590; Erratum: The footnote on p. 1583, “15A. Gemant, Naturwiss, 1935, 23, 406.” should be “15A. Gemant, Naturwiss., 1935, 25, 406”

  • Giacomin AJ (1987) A sliding plate melt rheometer incorporating a shear stress transducer. PhD thesis, Dept. Chemical Engineering, McGill University, Montreal, Canada

  • Giacomin AJ, Bird RB (2011a) Normal stress differences in large-amplitude oscillatory shear flow for the corotational “ANSR” model. Rheol Acta 50(9):741–752, Errata: In Eqs. (47) and (48), “20De2” and “10De2 − 50De4” should be “20De” and “10De − 50De3

    Article  Google Scholar 

  • Giacomin AJ, Bird RB (2011b) Erratum: official nomenclature of The Society of Rheology: −η″. J Rheol 55(4):921–923

  • Giacomin AJ, Dealy JM (1986) A new rheometer for molten plastics. S.P.E. Tech. Papers, XXXII, Proc. 44th Annual Tech. Conf., Society of Plastics Engineers, Boston, MA, pp. 711–714

  • Giacomin AJ, Dealy JM (1993) Large-amplitude oscillatory shear. Chapter 4. In: Collyer, A.A., (ed) Techniques in rheological measurement. Chapman and Hall, London & New York, pp. 99–121; Kluwer Academic Publishers, Dordrecht, pp. 99–121 (1993)

  • Giacomin AJ, Dealy JM (1998) Using large-amplitude oscillatory shear, chapter 11. In: Collyer AA, Clegg DW (eds) Rheological measurement, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 327–356

    Chapter  Google Scholar 

  • Giacomin AJ, Oakley JG (1992) Structural network models for molten plastics evaluated in large amplitude oscillatory shear. J Rheol 36:1529

    Article  Google Scholar 

  • Giacomin AJ, Samurkas T, Dealy JM (1989) A novel sliding plate rheometer for molten plastics. Polym Eng Sci 29(8):499–504

    Article  Google Scholar 

  • Giacomin AJ, Jeyaseelan RS, Samurkas T, Dealy JM (1993) Validity of separable BKZ model for large amplitude oscillatory shear. J Rheol 37:811

    Article  Google Scholar 

  • Giacomin AJ, Bird RB, Johnson LM, Mix AW (2011) Large-amplitude oscillatory shear flow from the corotational Maxwell model. J Non-Newtonian Fluid Mech 166(19–20):1081–1099, Errata: after Eq. (20), Ref. [10] should be [13]; in Eq. (66), “20De2” and “10De2 −50De4” should be “20De” and “(10 − 50De2)De” and so Fig. 15 through Fig. 17 of [Schmalzer et al. (2014b)] below replace Figs. 5–7; on the ordinates of Figs. 5–7, \( {\scriptscriptstyle \frac{1}{2}} \) should be 2; after Eq. (119), “(ζα)” should be “ζ(α)”; in Eq. (147), “n − 1” should be “n = 1”; in Eqs. (76) and (77), Ψ and Ψ″ should be Ψ1 and Ψ1″; throughout, Ψ 1 d, Ψ 1′ and Ψ 1″ should be Ψ1 d, Ψ1′ and Ψ1″; in Eqs. (181) and (182), “1,21” should be “1,2”; after Eq. (184) and in Eq. (185), “mp “should be “1, mp “; Eq. (65) should be \( \mathrm{We}/\mathrm{D}\mathrm{e}>\sqrt[{h}_{\mathrm{\mathbb{N}}}]{\left({h}_{\mathbf{\mathbb{N}}}+1\right)!} \); see also Giacomin et al. (2012)

  • Giacomin AJ, Bird RB, Johnson LM, Mix AW (2012) Corrigenda: “Large-amplitude oscillatory shear flow from the corotational Maxwell model”. J Non-Newtonian Fluid Mech 166:1081–1099, Journal of Non-Newtonian Fluid Mechanics, 187–188, 48–48; see also Giacomin et al. (2011) above

  • Giacomin AJ, Saengow C, Guay M and Kolitawong C (2014) Padé Approximants for large-amplitude oscillatory shear flow. PRG Report No. 009, QU-CHEE-PRG-TR--2014-9, Polymers Research Group, Chemical Engineering Dept., Queen’s University, Kingston

  • Giacomin AJ, Gilbert PH, Schmalzer AM (2015) Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow. Struct Dyn 2:024101

  • Gurnon AK, Wagner NJ (2012) Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. J Rheol 56:333

    Article  Google Scholar 

  • Han CD (2007) Rheology and processing of polymeric materials: volume I polymer rheology. Oxford University Press, New York

    Google Scholar 

  • Helfand E, Pearson DS (1982) Calculation of the nonlinear stress of polymers in oscillatory shear fields. J Polym Sci Polym Phys Ed 20:1249–1258

    Article  Google Scholar 

  • Hoyle DM (2010) Constitutive modelling of branched polymer melts in non-linear response, Chapter 4: Large amplitude oscillatory shear flow. PhD thesis, Dept. of Applied Mathematics, University of Leeds, Leeds, England

  • Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  Google Scholar 

  • Isayev AI, Hieber CA (1982) Oscillatory shear flow of polymeric systems. J Polym Sci Polym Phys Ed 20:423

    Article  Google Scholar 

  • Jedynak R (2015) Approximation of the inverse Langevin function revisited. Rheol Acta 54:29--39. doi:10.1007/s00397-014-0802-2

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ (1993) Best fit for differential constitutive model parameters to nonlinear oscillation data. J Non-Newtonian Fluid Mech 47:267

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ (1994) How affine is the entanglement network of molten low-density polyethylene in large amplitude oscillatory shear? J Eng Mater Technol 116:14

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ (1995a) The role of temperature in the entanglement kinetics of a polymer melt. J Appl Mech 62:794

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ (1995b) Structural network theory for a filled polymer melt in large amplitude oscillatory shear. Polym Gels Networks 3:117

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ (1995c) A constitutive theory for polyolefins in large amplitude oscillatory shear. Polym Eng Sci 35:768

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ (2008) Network theory for polymer solutions in large amplitude oscillatory shear. J Non-Newtonian Fluid Mech 148(1):24–32

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ, Oakley JG (1993a) Structure dependent moduli in the contravariant derivative of structural network theories for melts. J Rheol 37(1):127–132

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ, Oakley JG (1993b) Simplification of network theory for polymer melts in nonlinear oscillatory shear. AIChE J 39:846

    Article  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ, Stanfill KO (1994) Relating blow moldability to large amplitude oscillatory shear behavior. Polym Eng Sci 34:888

    Article  Google Scholar 

  • Kirkwood JG, Plock RJ (1956) Non-Newtonian viscoelastic properties of rod-like macromolecules in solution. J Chem Phys 24:665–669

    Article  Google Scholar 

  • Kirkwood JG, Plock RJ (1967) Non-Newtonian viscoelastic properties of rod-like macromolecules in solution. In: Auer PL (ed) Macromolecules (John Gamble Kirkwood collected works). Gordon and Breach, New York, Errata: On the left side of Eq. (1) on p. 113, ϵ should be \( \dot{\upepsilon} \). See also Eq. (1) of Kirkwood and Plock (1956); In Eq. (2a), G′ should be G″, and in Eq. (2b), G″ should be G′. See Eqs. (117a) and (117b) of Paul (1970)

    Google Scholar 

  • Kolitawong C, Giacomin AJ, Johnson LM (2010) Shear stress transduction. Cover article. Rev Sci Instrum 81(2), 021301, 1–20

  • Larson RG (1988) Constitutive equations for polymer melts and solutions. Buttersworths, Boston

    Google Scholar 

  • Leal LG, Hinch EJ (1972) The rheology of a suspension of nearly spherical particles subject to Brownian rotations: part 4 J Fluid Mech 55:745–765

  • Liu TY (1982) Rheological transients in entangled polymeric fluids. PhD thesis; Chemical Engineering Dept., University of California: Berkeley, CA

  • Liu TY, Soong DS, Williams MC (1984) Transient and steady rheology of polydisperse entangled melts. Predictions of a kinetic network model and data comparisons. J Polym Sci Polym Phys Ed 22:1561

    Article  Google Scholar 

  • Lodge AS (1961) Recent network theories of the rheological properties of moderately concentrated polymer solutions. In: Phénomènes de Relaxation et de Fluage en Rhéologie Non-linéaire. Editions du C.N.R.S., Paris, pp. 51–63

  • Lodge AS (1964) Elastic liquids. Academic, London, Errata: Eq. (6.40a) should be s = α{sin ωt(1 − cos ωτ) + cos ωt sin ωτ}; Eq. (6.40b) should be s 2 = α 2{1 + cos 2ωτ cos ωτ + sin 2ωt sin ωτ}(1 − cos ωτ); Eq. (6.41a) should be p 11 − p 22 = α 2{A + B cos 2ωt + C sin 2ωt}; Eq. (6.41b) should be p 21 = α{D cos ωt + A sin ωt}; in line 4 of p. 113, αAcosωt should be αDcosωt; in the sentence preceding Eq. (6.43), and also in Eq. (6.43), “the out-of-phase part of p 21” should be “the part of p 21 that is in-phase with s

    Google Scholar 

  • Macdonald IF (1968). Time-dependent nonlinear behavior of viscoelastic fluids., Ph.D. thesis; Chemical Engineering Dept., University of Wisconsin: Madison, WI

  • Macdonald IF (1975) Large amplitude oscillatory shear flow of viscoelastic materials. Rheol Acta 14:801

    Article  Google Scholar 

  • Macdonald IF, Marsh BD, Ashare E (1969) Rheological behavior for large amplitude oscillatory motion. Chem Eng Sci 24:1615

    Article  Google Scholar 

  • Mou CY, Mazo RM (1977) Normal stress in a solution of a plane-polygonal polymer under oscillating shearing flow. J Chem Phys 67:5972

    Article  Google Scholar 

  • Neidhöfer T, Wilhelm M, Debbaut B (2003) Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions. J Rheol 47:1351

    Article  Google Scholar 

  • Ng TSK, McKinley GH, Ewoldt RH (2011) Large amplitude oscillatory shear flow of gluten dough: a model power-law gel. J Rheol 55:627

    Article  Google Scholar 

  • Oakley JG (1992). Measurement of normal thrust and evaluation of upper-convected Maxwell models in large amplitude oscillatory shear. Masters thesis, Texas A&M University, Mechanical Engineering Dept., College Station, TX

  • Oakley JG, Giacomin AJ (1994) A sliding plate normal thrust rheometer for molten plastics. Polym Eng Sci 34(7):580–584

    Article  Google Scholar 

  • Oldroyd JG (1958) Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc A245:278–297

  • Padé MH (1892) Sur la Représentation Approchée d’une Fonction par des Fractions Rationnelles, Annales scientifiques de l’É.N.S. 3e série, tome 9, pp. S3–S93 (supplément)

  • Paul E (1969) Non-Newtonian viscoelastic properties of rodlike molecules in solution: comment on a paper by Kirkwood and Plock. J Chem Phys 51:1271–1290

    Article  Google Scholar 

  • Paul EW (1970) Some non-equilibrium problems for dilute solutions of macromolecules; part I: the plane polygonal polymer. PhD thesis, Dept. of Chemistry, University of Oregon, Eugene, OR

  • Paul EW, Mazo RM (1969) Hydrodynamic properties of a plane-polygonal polymer, according to Kirkwood-Riseman theory. J Chem Phys 51:1102

    Article  Google Scholar 

  • Pearson DS, Rochefort WE (1982) Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J Polym Sci Polym Phys Ed 20:83–98, Errata: on p. 95, e iωs should be e −iω in Eq. (A2); after Eq. (A.10), α should be \( \sqrt{\omega\;{\tau}_d/2} \); and in Eq. (A.11), cosx should be coshx

    Article  Google Scholar 

  • Phan-Thien N, Newberry M, Tanner RI (2000) Non-linear oscillatory flow of a soft solid-like viscoelastic material. J Non-Newtonian Fluid Mech 92:67–80

    Article  Google Scholar 

  • Plock RJ (1957) I. Non-Newtonian viscoelastic properties of rod-like macromolecules in solution. II. The Debye-Hückel, Fermi-Thomas theory of plasmas and liquid metals. PhD thesis, Yale University, New Haven, CT; Errata: In Eqs. (2.4a), G′ should be G″, and in Eq. (2.4b), G″ should be G′. See Eqs. (117a) and (117b) of Paul EW (1970)

  • Saengow C, Giacomin AJ, Kolitawong C (2014), Exact analytical solution for large-amplitude oscillatory shear flow. PRG Report No. 008, QU-CHEE-PRG-TR--2014-8, Polymers Research Group, Chemical Engineering Dept., Queen’s University, Kingston

  • Saengow C, Giacomin AJ, Kolitawong C (2015) Exact analytical solution for large-amplitude oscillatory shear flow. Macromol Theory Simul, doi:10.1002/mats.201400104

  • Schmalzer AM (2014) Large-amplitude oscillatory shear flow of rigid dumbbell suspensions. PhD thesis, University of Wisconsin, Mechanical Engineering Dept., Madison, WI

  • Schmalzer AM, Giacomin AJ (2014) Orientation in large-amplitude oscillatory shear. Macromol Theory Simul 23:1–27. doi:10.1002/mats.201400058

    Article  Google Scholar 

  • Schmalzer AM, Bird RB, Giacomin AJ (2014) Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions. PRG Report No. 002, QU-CHEE-PRG-TR--2014-2, Polymers Research Group, Chemical Engineering Dept., Queen’s University, Kingston, CANADA

  • Schmalzer AM, Bird RB, Giacomin AJ (2014b) Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions. J Non-Newtonian Fluid Mech. doi:10.1016/j.jnnfm.2014.09.001, Erratum: Above Eqs. (14) and (25), “significant figures” should be “16 significant figures”

    Google Scholar 

  • Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Non-Newtonian Fluid Mech 112:237

    Article  Google Scholar 

  • Simhambhatla M, Leonov AI (1995) On the rheological modeling of viscoelastic polymer liquids with stable constitutive equations. Rheol Acta 34:259

    Article  Google Scholar 

  • Spriggs TW (1965) A four-constant model for viscoelastic fluids. Chem Eng Sci 20:931–940

    Article  Google Scholar 

  • Spriggs TW (1966) Constitutive equations for viscoelastic fluids. Ph.D. thesis, Chemical Engineering Department, University of Wisconsin, Madison, WI

  • Tee T-T (1974) Large amplitude oscillatory shearing of polymer melts, Ph. D. Thesis, Dept. of Chemical Engineering, McGill University, Montreal, Canada

  • Tee T-T, Dealy JM (1975) Nonlinear viscoelasticity of polymer melts. Trans Soc Rheol 19:595–615

    Article  Google Scholar 

  • Thompson RL, Alicke AA, de Souza Mendez PR (2015) Model-based material functions for SAOS and LAOS analyses. J Non-Newtonian Fluid Mech 215:19–30

    Article  Google Scholar 

  • Tsang WKW (1981) The use of large transient deformations to elucidate structural phenomena and evaluate network models for molten polymers, PhD thesis; Dept. of Chemical Engineering, McGill University: Montreal, Canada

  • Tsang WKW, Dealy JM (1981) The use of large transient deformations to evaluate rheological models for molten polymers. J Non-Newtonian Fluid Mech 9:203

    Article  Google Scholar 

  • Wagner MH, Rolón-Garrido VH, Hyun K, Wilhelm M (2011) Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers. J Rheol 55:495

    Article  Google Scholar 

  • Walters K (1975) Rheometry. Chapman and Hall, London

    Google Scholar 

  • Walters K, Jones TER (1970) Further Studies on the usefulness of the Weissenberg Rheogoniometer. Proceedings of the Fifth International Congress on Rheology, Vol. 4, 337–350, University of Tokyo Press, Tokyo; University Park Press, Baltimore

  • Wapperom P, Leygue A, Keunings R (2005) Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model. J Non-Newtonian Fluid Mech 130:63

    Article  Google Scholar 

  • Williams MC, Bird RB (1962) Three-constant Oldroyd model for viscoelastic fluids. Phys Fluids 5:1126–1127

    Article  Google Scholar 

  • Williams MC, Bird RB (1964) Oscillatory behavior of normal stresses in viscoelastic fluids. Ind Eng Chem Fundam 3:42–49

    Article  Google Scholar 

  • Yosick JA, Giacomin AJ (1996) Can nonlinear deformation amplify subtle differences in linear viscoelasticity? J Non-Newtonian Fluid Mech 66:193

    Article  Google Scholar 

  • Yosick JA, Giacomin AJ, Moldenaers P (1997) A kinetic network model for nonlinear flow behavior of molten plastics in both shear and extension. J Non-Newtonian Fluid Mech 70:103–123

    Article  Google Scholar 

  • Yu W, Bousmina M, Grmela M, Zhou C (2002) Modeling of oscillatory shear flow of emulsions under small and large deformation fields. J Rheol 46:1401–1418

    Article  Google Scholar 

  • Yziquel F (1998). Étude du comportement rhéologique de suspensions modèles de fumée de silice. PhD thesis; Génie Chimique. École Polytechnique: Montréal, Canada

  • Yziquel F, Carreau PJ, Moan M, Tanguy PA (1999a) Rheological modeling of concentrated colloidal suspensions. J Non-Newtonian Fluid Mech 86:133

    Article  Google Scholar 

  • Yziquel F, Carreau PJ, Tanguy PA (1999b) Non-linear viscoelastic behavior of fumed silica suspensions. Rheol Acta 38:14

    Article  Google Scholar 

  • Zhang J (张娟), Qu J-P (瞿金平) (2002) Nonaffine network structural model for molten low-density polyethylene and high-density polyethylene in oscillatory shear. J Shanghai Univ (English Ed) 6:292

  • Zhang J (张娟), Qu J-P (瞿金平) (2003) 正弦应变下聚合物熔体的非仿射网络结构模型. 力学与实践 25:15

  • Zhang J (张娟), Qu J-P (瞿金平) (2003)聚合物熔体的非仿射网络结构模型及其数值解, 力学季刊 (Chinese Quarterly of Mechanics) 24:96

  • 吴其晔 and 巫静安 (2002) 高分子材料流变学 Polymer Rheology. 高等教育出版社, 北京市

  • 周持兴 (2004) 聚合物加工理论. 科学出版社, 北京市

Download references

Acknowledgments

We thank R. Byron Bird, Professor Emeritus of Chemical and Biological Engineering, of the Rheology Research Center of the University of Wisconsin-Madison for his encouragement and helpful discussions. The financial support of the Royal Golden Jubilee Program of the Thailand Research Fund for (contract no. PHD/0116/2554) is also greatly appreciated. A.J. Giacomin is indebted to the Faculty of Applied Science and Engineering of Queen’s University at Kingston, for its support through a Research Initiation Grant (RIG). This research was undertaken, in part, thanks to funding from the Canada Research Chairs program of the Government of Canada of the Natural Sciences and Engineering Research Council of Canada (NSERC) Tier 1 Canada Research Chair in Rheology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jeffrey Giacomin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacomin, A.J., Saengow, C., Guay, M. et al. Padé approximants for large-amplitude oscillatory shear flow. Rheol Acta 54, 679–693 (2015). https://doi.org/10.1007/s00397-015-0856-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0856-9

Keywords

Navigation