Skip to main content
Log in

Non-Newtonian deterministic lateral displacement separator: theory and simulations

Rheologica Acta Aims and scope Submit manuscript

Abstract

Deterministic lateral displacement devices have been proved to be an efficient way to perform continuous particle separation in microfluidic applications (Huang et al. Science 304:987–990, 2004). On the basis of their size, particles traveling through an array of obstacles follow different paths and can be separated in outflow. One limitation of such a technique is that each device works for a specific critical size to achieve particle separation, and a new device with different geometrical properties needs to be fabricated, as the dimensions of the particles to be separated change. In this work, we demonstrate the possibility to tune the critical particle size in a deterministic lateral displacement device by using non-Newtonian fluids as suspending liquid. The analysis is carried out by extending the theory developed for a Newtonian constitutive law (Inglis et al. Lab Chip 6:655–658, 2006) to account for fluid shear-thinning. 3-D finite element simulations are performed to compute the dynamics of a spherical particle flowing through the deterministic ratchet. The results show that fluid shear-thinning, by altering the flow field between the obstacles, contributes to decrease the critical particle diameter as compared to the Newtonian case. Numerical simulations demonstrate that tunability of the critical separation size can be achieved by using the flow rate as control parameter. A design formula, relating the separation diameter to the fluid rheology and the relevant geometrical parameters of the device, is derived. Such a formula, originally developed for a power-law model, is proved to work for non-Newtonian liquids with a general viscosity trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Beech JP, Tegenfeldt JO (2008) Tuneable separation in elastomeric microfluidics devices. Lab Chip 8:657–659

    Article  CAS  Google Scholar 

  • Beech JP, Jonsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9:2698–2706

    Article  CAS  Google Scholar 

  • Beech JP, Holm SH, Adolfsson K, Tegenfeldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12:1048–1051

    Article  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids: fluid mechanics. Wiley-Interscience, New York

    Google Scholar 

  • D’Avino G, Hulsen MA, Snijkers F, Greco F, Maffettone PL (2008) Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: simulation results. J Rheol 52:1331–1346

    Article  Google Scholar 

  • D’Avino G, Maffettone PL, Greco F, Hulsen MA (2010) Viscoelasticity-induced migration of a rigid sphere in confined shear flow. J Non-Newton Fluid Mech 165:466–474

    Article  Google Scholar 

  • D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL (2012) Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12:1638–1645

    Article  Google Scholar 

  • Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103:14779–14784

    Article  CAS  Google Scholar 

  • Fonslow BR, Bowser MT (2008) Fast electrophoresis separation optimization using gradient micro free-flow electrophoresis. Anal Chem 80:3182–3189

    Article  CAS  Google Scholar 

  • Frechette J, Drazer G (2009) Directional locking and deterministic separation. J Fluid Mech 627:379–401

    Article  Google Scholar 

  • Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79:1309–1331

    Article  Google Scholar 

  • Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25:755–794

    Article  CAS  Google Scholar 

  • Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81:9178–9182

    Article  CAS  Google Scholar 

  • Heller M, Bruus H (2008) A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J Micromechanics Microengineering 18:075,030

    Article  Google Scholar 

  • Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J Comput Phys 169:427–462

    Article  CAS  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  CAS  Google Scholar 

  • Huh D, Bahng JH, Ling YB, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79:1369–1376

    Article  CAS  Google Scholar 

  • Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658

    Article  CAS  Google Scholar 

  • Inglis DW, Davis JA, Zieziulewicz TJ, Lawrence DA, Austin RH, Sturm JC (2008a) Determining blood cell size by microfluidic hydrodynamics. J Immunol Methods 329:151–156

    Article  CAS  Google Scholar 

  • Inglis DW, Morton KJ, Davis JA, Zieziulewicz TJ, Lawrence DA, Austin RH, Sturm JC (2008b) Microfluidic device for label-free measurement of platelet activation. Lab Chip 8:925–931

    Article  CAS  Google Scholar 

  • Inglis DW, Herman N, Vesey G (2010) Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4:024,109

    Google Scholar 

  • Kim JY, Ahn SW, Lee SS, Kim JM (2012) Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Lab Chip 12:2807–2814

    Article  Google Scholar 

  • Kulrattanarak T, van der Sman RGM, Lubbersen YS, Schroen CGPH, Pham HTM, Sarro PM, Boom RM (2011a) Mixed motion in deterministic ratchets due to anisotropic permeability. J Colloid Interface Sci 354:7–14

    Article  CAS  Google Scholar 

  • Kulrattanarak T, van der Sman RGM, Schroen CGPH, Boom RM (2011b) Analysis of mixed motion in deterministic ratchets via experiment and particle simulation. Microfluid Nanofluidics 10:843–853

    Article  CAS  Google Scholar 

  • Laurell T, Ptersson F, Nilsson A (2007) Chip integrated stategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506

    Article  CAS  Google Scholar 

  • Leshansky AM, Bransky A, Korin N, Dinnar U (2006) Tunable nonlinear viscoelastic focusing in a microfluidic device. Phys Rev Lett 98:234–501

    Google Scholar 

  • Long RL, Heller M, Beech JP, Linke H, Bruus H, Tegenfeldt JO (2008) Multidirectional sorting modes in deterministic lateral displacement devices. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 78:046,304

    Article  Google Scholar 

  • Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH, Sturm JC (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluidics 9:1143–1149

    Article  Google Scholar 

  • Mazereeuw M, de Best CM, Tjaden UR, Irth H, van der Greef J (2000) Free flow electrophoresis device for continuous on-line separation in analytical systems. An application in biochemical detection. Anal Chem 72:3881–3886

    Article  CAS  Google Scholar 

  • Nam J, Lee Y, Shin S (2011) Size-dependent microparticles separarion through standing surface acoustic waves. Microfluid Nanofluidics 11:317–326

    Article  CAS  Google Scholar 

  • Nam J, Lim H, Kim D, Jung H, Shin S (2012) Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Lab Chip 12:1347–1354

    Article  CAS  Google Scholar 

  • Pamme N (2007) Continuous flow separations in micrfluidic devices. Lab Chip 7:1644–1659

    Article  CAS  Google Scholar 

  • Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76:7250–7256

    Article  CAS  Google Scholar 

  • Snijkers F, D’Avino G, Maffettone PL, Greco F, Hulsen MA, Vermant J (2011) Effect of viscoelasticity on the rotation of a sphere in shear flow. J Non-Newton Fluid Mech 166:363–372

    Article  CAS  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics on the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  CAS  Google Scholar 

  • Villone MM, D’Avino G, Hulsen MA, Greco F, Maffettone PL (2011) Simulations of viscoelasticity-induced focusing of particles in pressure-driven micro-slit flow. J Non-Newton Fluid Mech 166:1396–1405

    Article  CAS  Google Scholar 

  • Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8:299–308

    Article  CAS  Google Scholar 

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 11:1233–1239

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471

    Article  CAS  Google Scholar 

  • Yang S, Kim JY, Lee SJ, Lee SS, Kim JM (2011) Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11:266–273

    Article  CAS  Google Scholar 

  • Yang S, Lee SS, Ahn SW, Kang K, Shim W, Lee G, Hyun K, Kim JM (2012) Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity. Soft Matter 8:5011–5019

    Article  CAS  Google Scholar 

  • Zhang X, Liu X, Gu D, Zhou W, Xie T, Mo Y (1996) Rheological models for xanthan gum. J Food Eng 27:203–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano D’Avino.

Additional information

Special issue devoted to novel trends in rheology

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Avino, G. Non-Newtonian deterministic lateral displacement separator: theory and simulations. Rheol Acta 52, 221–236 (2013). https://doi.org/10.1007/s00397-013-0680-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0680-z

Keywords

Navigation