Skip to main content
Log in

A simple shear cell for the direct visualization of step-stress deformation in soft materials

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We introduce a custom-built stress-controlled shear cell coupled to a confocal microscope for direct visualization of constant-stress shear deformation in soft materials. The torque generator is a cylindrical Taylor–Couette system with a Newtonian fluid between a rotating inner bob and a free-to-move outer cup. A spindle/cone assembly is coaxially coupled to the cup and transfers the torque exerted by the fluid to the sample of interest in a cone-and-plate geometry. We demonstrate the performance of our device in both steady-state and transient experiments with different viscoelastic materials. Our apparatus can conduct unidirectional constant-stress experiments as accurately as most commercial rheometers, with the capability to directly visualize the flow field using tracer particles. Further, our step-stress experiments on viscoelastic materials are devoid of creep ringing, which is an advantageous aspect of our torque generation mechanism. We believe that the device presented here could serve as a powerful and cost-effective tool to investigate the microstructural determinants of nonlinear rheology in complex fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ballesta P, Besseling R, Isa L, Petekidis G, Poon WCK (2008) Slip and flow of hard-sphere colloidal glasses. Phys Rev Lett 101(25):258301

    Article  CAS  Google Scholar 

  • Ballesta P, Petekidis G, Isa L, Poon WCK, Besseling R (2012) Wall slip and flow of concentrated hard-sphere colloidal suspensions. J Rheol 56(5):1005–1037

    Article  CAS  Google Scholar 

  • Basu A, Wen Q, Mao X, Lubensky TC, Janmey PA, Yodh AG (2011) Nonaffine displacements in flexible polymer networks. Macromolecules 44(6):1671–1679. doi:10.1021/ma1026803

    Article  CAS  Google Scholar 

  • Batchelor GK (1970) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Becu L, Grondin P, Colin A, Manneville S (2005) How does a concentrated emulsion flow? Yielding, local rheology, and wall slip. Colloid Surface A 263(1–3):146–152. doi:10.1016/j.colsurfa.2004.12.033

    Article  CAS  Google Scholar 

  • Besseling R, Isa L, Ballesta P, Petekidis G, Cates ME, Poon WCK (2010) Shear banding and flow-concentration coupling in colloidal glasses. Phys Rev Lett 105(26):268301

    Article  CAS  Google Scholar 

  • Besseling R, Isa L, Weeks ER, Poon WCK (2009) Quantitative imaging of colloidal flows. Adv Colloid Interfac 146(1–2):1–17

    Article  CAS  Google Scholar 

  • Caton F, Baravian C (2008) Plastic behavior of some yield stress fluids: from creep to long-time yield. Rheol Acta 47(5):601–607. doi:10.1007/s00397-008-0267-2

    Article  CAS  Google Scholar 

  • Chan HK, Mohraz A (2012) Two-step yielding and directional strain-induced strengthening in dilute colloidal gels. Phys Rev E 85(4):041403. doi:10.1103/Physreve.85.041403

    Article  Google Scholar 

  • Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover, New York

    Google Scholar 

  • Chen D, Semwogerere D, Sato J, Breedveld V, Weeks ER (2010) Microscopic structural relaxation in a sheared supercooled colloidal liquid. Phys Rev E 81(1):011403. doi:10.1103/Physreve.81.011403

    Article  Google Scholar 

  • Chen P, Yu L, Kealy T, Chen L, Li L (2007) Phase transition of starch granules observed by microscope under shearless and shear conditions. Carbohydr Polym 68(3):495–501

    Article  CAS  Google Scholar 

  • Chikkadi V, Schall P (2012) Nonaffine measures of particle displacements in sheared colloidal glasses. Phys Rev E 85(3):031402. doi:10.1103/Physreve.85.031402

    Article  CAS  Google Scholar 

  • Christel M, Yahya R, Albert M, Antoine BA (2012) Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls. Soft Matter 8(28):3365–3367

    Article  Google Scholar 

  • Cloitre M, Borrega R, Monti F, Leibler L (2003) Structure and flow of polyelectrolyte microgels: from suspensions to glasses. Comptes Rendus Physique 4(2):221–230

    Article  CAS  Google Scholar 

  • Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G (2006) Aging and solid or liquid behavior in pastes. J Rheol 50(6):975–994. doi:10.1122/1.2337259

    Article  CAS  Google Scholar 

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interf Sci 179(1):298–310

    Article  CAS  Google Scholar 

  • Croucher MD, Milkie TH (1983) Temperature dependence of the shear viscosity of sterically stabilised polymer colloids. Faraday Discuss Chem Soc 76:261–276

    Article  Google Scholar 

  • Divoux T, Barentin C, Manneville S (2011) From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids. Soft Matter 7(18):8409–8418

    Article  CAS  Google Scholar 

  • Dou H-S, Khoo BC, Yeo KS (2008) Instability of Taylor–Couette flow between concentric rotating cylinders. Int J Therm Sci 47(11):1422–1435

    Article  Google Scholar 

  • Ewoldt RH, Mckinley GH (2007) Creep ringing in rheometry or how to deal with oft-discarded data in step stress tests. Rheol Bull 76(1):4–6

    Google Scholar 

  • Falk ML, Langer JS, Pechenik L (2004) Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data. Phys Rev E 70(1):011507

    Article  CAS  Google Scholar 

  • Fielding SM, Sollich P, Cates ME (2000) Aging and rheology in soft materials. J Rheol 44(2):323–369

    Article  CAS  Google Scholar 

  • Gibaud T, Frelat D, Manneville S (2010) Heterogeneous yielding dynamics in a colloidal gel. Soft Matter 6(15):3482–3488

    Article  CAS  Google Scholar 

  • Gopalakrishnan V, Zukoski CF (2007) Delayed flow in thermo-reversible colloidal gels. J Rheol 51(4):623–644

    Article  CAS  Google Scholar 

  • Goyon J, Colin A, Bocquet L (2010) How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity. Soft Matter 6(12):2668–2678. doi:10.1039/C001930e

    Article  CAS  Google Scholar 

  • Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Spatial cooperativity in soft glassy flows. Nature 454(7200):84–87. doi:10.1038/Nature07026

    Article  CAS  Google Scholar 

  • Hoekstra H, Vermant J, Mewis J, Fuller GG (2003) Flow-induced anisotropy and reversible aggregation in two-dimensional suspensions. Langmuir 19(22):9134–9141. doi:10.1021/la034582k

    Article  CAS  Google Scholar 

  • Isa L, Besseling R, Schofield AB, Poon WCK (2010) Quantitative imaging of concentrated suspensions under flow. Adv Polym Sci 236:163–202. doi:10.1007/12_2009_38

    Article  CAS  Google Scholar 

  • Jaishankar A, Sharma V, McKinley GH (2011) Interfacial viscoelasticity, yielding and creep ringing of globular protein-surfactant mixtures. Soft Matter 7(17):7623–7634

    Article  CAS  Google Scholar 

  • Keville KM, Franses EI, Caruthers JM (1991) Preparation and characterization of monodisperse polymer microspheroids. J Colloid Interf Sci 144(1):103–126

    Article  CAS  Google Scholar 

  • Koumakis N, Laurati M, Egelhaaf SU, Brady JF, Petekidis G (2012) Yielding of hard-sphere glasses during start-up shear. Phys Rev Lett 108(9):098303

    Article  CAS  Google Scholar 

  • Lindstrom SB, Kodger TE, Sprakel J, Weitz DA (2012) Structures, stresses, and fluctuations in the delayed failure of colloidal gels. Soft Matter 8(13):3657–3664. doi:10.1039/C2sm06723d

    Article  Google Scholar 

  • Maranzano BJ, Wagner NJ (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117(22):10291–10302. doi:10.1063/1.1519253

    Article  CAS  Google Scholar 

  • Marti I, Höfler O, Fischer P, Windhab EJ (2005) Rheology of concentrated suspensions containing mixtures of spheres and fibres. Rheol Acta 44(5):502–512. doi:10.1007/s00397-005-0432-9

    Article  CAS  Google Scholar 

  • Martin JD, Hu YT (2012) Transient and steady-state shear banding in aging soft glassy materials. Soft Matter 8(26):2940–2949

    Article  Google Scholar 

  • Masschaele K, Fransaer J, Vermant J (2011) Flow-induced structure in colloidal gels: direct visualization of model 2D suspensions. Soft Matter 7(17):7717–7726

    Article  CAS  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48(6):1295–1320

    Article  CAS  Google Scholar 

  • Mirsepassi A, Rajaram B, Mohraz A, Dunn-Rankin D (2012) Particle chaining and chain dynamics in viscoelastic liquids. J Non-Newton Fluid 179:1–8. doi:10.1016/j.jnnfm.2012.04.005

    Article  Google Scholar 

  • Mohraz A, Solomon MJ (2005) Orientation and rupture of fractal colloidal gels during start-up of steady shear flow. J Rheol 49(3):657–681. doi:10.1122/1.1895799

    Article  CAS  Google Scholar 

  • Ovarlez G, Coussot P (2007) Physical age of soft-jammed systems. Phys Rev E 011406(1). doi:10.1103/Physreve.76.011406

    Google Scholar 

  • Paredes J, Shahidzadeh-Bonn N, Bonn D (2011) Shear banding in thixotropic and normal emulsions. J Phys-Condens Mat 284116(28). doi:10.1088/0953-8984/23/28/284116

    Google Scholar 

  • Petekidis G, Vlassopoulos D, Pusey PN (2004) Yielding and flow of sheared colloidal glasses. J Phys-Condens Mat 16(38):S3955–S3963. doi:10.1088/0953-8984/16/38/013

    Article  CAS  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52(2):649–676. doi:10.1122/1.2838255

    Article  CAS  Google Scholar 

  • Rajaram B, Mohraz A (2010) Microstructural response of dilute colloidal gels to nonlinear shear deformation. Soft Matter 6(10):2246–2259. doi:10.1039/B926076e

    Article  CAS  Google Scholar 

  • Rajaram B, Mohraz A (2012) Steady shear microstructure in dilute colloid-polymer mixtures. Soft Matter 8(29):7699–7707. doi:10.1039/C2sm25936b

    Article  CAS  Google Scholar 

  • Scirocco R, Vermant J, Mewis J (2004) Effect of the viscoelasticity of the suspending fluid on structure formation in suspensions. J Non-Newton Fluid 117(2–3):183–192

    Article  CAS  Google Scholar 

  • Semwogerere D, Weeks ER (2008) Shear-induced particle migration in binary colloidal suspensions. Phys Fluids 20(4):043306. doi:10.1063/1.2907378

    Article  Google Scholar 

  • Seth JR, Locatelli-Champagne C, Monti F, Bonnecaze RT, Cloitre M (2012) How do soft particle glasses yield and flow near solid surfaces. Soft Matter 8(1):140–148

    Article  CAS  Google Scholar 

  • Siebenbürger M, Ballauff M, Voigtmann T (2012) Creep in colloidal glasses. Phys Rev Lett 108(25):255701

    Article  Google Scholar 

  • Sprakel J, Lindstrom SB, Kodger TE, Weitz DA (2011) Stress enhancement in the delayed yielding of colloidal gels. Phys Rev Lett 106(24). doi:10.1103/Physrevlett.106.248303

    Google Scholar 

  • Struik LCE (1967) Free damped vibrations of linear viscoelastic materials. Rheol Acta 6(2):119–129. doi:10.1007/bf01969161

    Article  CAS  Google Scholar 

  • Thompson BG, Smith PA (2004) An experiment in rotational motion with linear and quadratic drag. Am J Phys 72(6):839–842

    Article  Google Scholar 

  • Tolstoguzov VB, Mzhel’sky AI, Gulov VY (1974) Deformation of emulsion droplets in flow. Colloid Polym Sci 252(2):124–132. doi:10.1007/bf01555536

    Article  CAS  Google Scholar 

  • van den Brule BHAA, Kadijk SE (1992) A simple constant-stress rheometer. J Non-Newton Fluid 43(1):127–139

    Article  CAS  Google Scholar 

  • Varadan P, Solomon MJ (2001) Shear-induced microstructural evolution of a thermoreversible colloidal gel. Langmuir 17(10):2918–2929. doi:10.1021/La001504d

    Article  CAS  Google Scholar 

  • Vermant J, Raynaud L, Mewis J, Ernst B, Fuller GG (1999) Large-scale bundle ordering in sterically stabilized lattices. J Colloid Interface Sci 211:221–229

    Article  CAS  Google Scholar 

  • Wu YL, Brand JHJ, van Gemert, JLA, Verkerk J, Wisman H, van Blaaderen A, Imhof A (2007) A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow. Rev Sci Instrum 78(10):103902–103911

    Article  Google Scholar 

  • Yin GJ, Solomon MJ (2008) Soft glassy rheology model applied to stress relaxation of a thermoreversible colloidal gel. J Rheol 52(3):785–800. doi:10.1122/1.2885738

    Article  CAS  Google Scholar 

  • Zaccone A, Gentili D, Wu H, Morbidelli M, Del Gado, E (2011) Shear-driven solidification of dilute colloidal suspensions. Phys Rev Lett 106(13):138301. doi:10.1103/Physrevlett.106.138301

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Bharath Rajaram (UC Irvine, currently at TA Instruments), for his contributions and participation in the early parts of this study, and Joe LaCour (KineOptics) and Steve Weinstock (UC Irvine) for their helpful discussions in the design and fabrication of the shear cell. Financial support for this work was provided by a National Science Foundation CAREER Award to AM (CBET 0955241) and a Department of Education GAANN Fellowship to HKC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohraz.

Additional information

Special issue devoted to novel trends in rheology.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 420 KB)

(MPG 1.15 MB)

(MPG 4.49 MB)

(MPG 4.51 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, H.K., Mohraz, A. A simple shear cell for the direct visualization of step-stress deformation in soft materials. Rheol Acta 52, 383–394 (2013). https://doi.org/10.1007/s00397-013-0679-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0679-5

Keywords

Navigation