Skip to main content
Log in

Thermodynamic formulation of flowing soft matter with transient forces

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The Responsive Particle Dynamics model is a very efficient method to account for the transient forces present in complex fluids, such as solutions of entangled polymers. This coarse-grained model considers a solution of particles that are made of a core and a corona. The cores typically interact through conservative interactions, while the coronae transiently penetrate each other to form short-lived temporary interactions, typically of entropic origin. In this study, we reformulate the resulting rheological model within the general framework of nonequilibrium thermodynamics called General Equation for the Nonequilibrium Reversible–Irreversible Coupling. This allows us to determine the consistency of the model, from a mechanistic and thermodynamic point of view, and to isolate the reversible and irreversible contributions to the dynamics of the model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For a more detailed discussion of the Onsager–Casimir symmetry of the dissipative bracket, see Section 3.2.1 in Öttinger (2005); for a very detailed level of description, the dissipative bracket might not possess any well-defined symmetry properties, as is elaborated in Section 7.2.4 of Öttinger (2005).

References

  • Adams JM, Fielding SM, Olmsted PD (2011) Transient shear banding in entangled polymers: a study using the Rolie-Poly model. J Rheol 55:1007–1032

    Article  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, 2nd edn. Wiley, New York

    Google Scholar 

  • Boukany PE, Wang SQ (2009) Shear banding or not in entangled DNA solutions depending on the level of entanglement. J Rheol 53:73–83

    Article  CAS  Google Scholar 

  • Briels WJ (2009) Transient forces in flowing soft matter. Soft Matter 5:4401–4411

    Article  CAS  Google Scholar 

  • Briels WJ, Vlassopoulos D, Kang K, Dhont JKG (2011) Constitutive equations for the flow behavior of entangled polymeric systems: application to star polymers. J Chem Phys 134:124901

    Article  CAS  Google Scholar 

  • Cao J, Likhtman A (2012) Shear banding in molecular dynamics of polymer melts. Phys Rev Lett 108:028302

    Article  Google Scholar 

  • Cates ME, Evans MR (eds) (2000) Soft and fragile matter: nonequilibrium dynamics, metastability and flow. Institute of Physics Publishing, Bristol, UK

    Google Scholar 

  • Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47:257–281

    Article  CAS  Google Scholar 

  • Ellero M, Español P, Flekkøy E (2003) Thermodynamically consistent fluid particle model for viscoelastic flows. Phys Rev E 68:041504

    Article  Google Scholar 

  • Fuchs M, Cates ME (2009) A mode coupling theory for Brownian particles in homogeneous steady shear flow. J Rheol 53:957–1000

    Article  CAS  Google Scholar 

  • Götze W (1999) Recent tests of the mode-coupling theory for glassy dynamics. J Phys: Condens Matter 11:A1–A45

    Article  Google Scholar 

  • Götze W, Sjörgen L (1992) Relaxation processes in supercooled liquids. Rep Prog Phys 55:241–376

    Article  Google Scholar 

  • Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56:6620–6632

    Article  CAS  Google Scholar 

  • Hütter M, Svendsen B (2012) Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible–irreversible coupling. Contin Mech Thermodyn 24:211–227

    Article  Google Scholar 

  • Ilg P, Öttinger HC (1999) Nonequilibrium relativistic thermodynamics in bulk viscous cosmology. Phys Rev D 61:023510

    Article  Google Scholar 

  • Ilg P, Mavrantzas V, Öttinger HC (2009) Multiscale modeling and coarse graining of polymer dynamics: simulations guided by statistical beyond-equilibrium thermodynamics. In: Gujrati PD, Leonov AI (eds) Modeling and simulation in polymers. Wiley-VCH, Weinheim, Germany, pp 343–383

    Google Scholar 

  • Irving JH, Kirkwood JG (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys 18:817–829

    Article  CAS  Google Scholar 

  • Kindt P, Briels WJ (2007) A single particle model to simulate the dynamics of entangled polymer melts. J Chem Phys 127:134901

    Article  CAS  Google Scholar 

  • Kröger M (2005) Models for polymeric and anisotropic liquids. Lecture notes in physics, vol 675. Springer, New York

    Google Scholar 

  • Kröger M, Hütter M (2010) Automated symbolic calculations in nonequilibrium thermodynamics. Comput Phys Commun 181:2149–2157

    Article  Google Scholar 

  • Larson RG (1998) The structure and rheology of complex fluids. Oxford University Press, Oxford, UK

    Google Scholar 

  • McLennan JA (1989) Introduction to nonequilibrium statistical mechanics. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Mielke A (2011) Formulation of thermoelastic dissipative material behavior using GENERIC. Contin Mech Thermodyn 23:233–256

    Article  Google Scholar 

  • Müller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3:754–769

    Article  Google Scholar 

  • van den Noort A, den Otter WK, Briels WJ (2007) Coarse graining of slow variables in dynamic simulations of soft matter. Europhys Lett 80:28003

    Article  Google Scholar 

  • Öttinger HC (1998a) On the structural compatibility of a general formalism for nonequilibrium dynamics with special relativity. Physica, A 259:24–42

    Article  Google Scholar 

  • Öttinger HC (1998b) Relativistic and nonrelativistic description of fluids with anisotropic heat conduction. Physica, A 254:433–450

    Article  Google Scholar 

  • Öttinger HC (1999) Thermodynamically admissible equations for causal dissipative cosmology, galaxy formation, and transport processes in a gravitational collapse. Phys Rev D 60:103507

    Article  Google Scholar 

  • Öttinger HC (2001) Thermodynamic admissibility of the pompon model for branched polymers. Rheol Acta 40:317–321

    Article  Google Scholar 

  • Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley-Interscience, Hoboken, New Jersey

    Book  Google Scholar 

  • Öttinger HC (2011) The geometry and thermodynamics of dissipative quantum systems. Europhys Lett 94:10006

    Article  Google Scholar 

  • Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56:6633–6655

    Article  Google Scholar 

  • Öttinger HC, Bedeaux D, Venerus D (2009) Nonequilibrium thermodynamics of transport through moving interfaces with application to bubble growth and collapse. Phys Rev E 80:021606

    Article  Google Scholar 

  • Padding JT, Mohite LV, Auhl D, Briels WJ, Bailly C (2011) Mesoscale modeling of the rheology of pressure sensitive adhesives through inclusion of transient forces. Soft Matter 7:5036–5046

    Article  CAS  Google Scholar 

  • Pagonabarraga I, Frenkel D (2001) Dissipative particle dynamics for interacting systems. J Chem Phys 115:5015–5026

    Article  CAS  Google Scholar 

  • Schindler M (2010) A numerical test of stress correlations in fluctuating hydrodynamics. Chem Phys 375:327–336

    Article  CAS  Google Scholar 

  • Schofield P, Henderson JR (1982) Statistical mechanics of inhomogeneous fluids. Proc R Soc Lond, A 379:231–246

    Article  Google Scholar 

  • Sprakel J, Spruijt E, van der Gucht J, Padding JT, Briels WJ (2009) Failure-mode transition in transient polymer networks with particle-based simulations. Soft Matter 5:4748–4756

    Article  CAS  Google Scholar 

  • Thakre AK, den Otter WK, Padding JT, Briels WJ (2008) Spinodal decomposition of asymmetric binary fluids in a micro-Couette geometry simulated with molecular dynamics. J Chem Phys 129:074505

    Article  Google Scholar 

  • Wagner NJ (2001) The Smoluchowski equation for colloidal suspensions developed and analyzed through the GENERIC formalism. J Non-Newtonian Fluid Mech 96:177–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Martin Kröger for insightful discussions. Support provided by the European Commission through the MODIFY (FP7-NMP-2008-SMALL-2, Code 228320) research project is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Savin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savin, T., Briels, W.J. & Öttinger, H.C. Thermodynamic formulation of flowing soft matter with transient forces. Rheol Acta 52, 23–32 (2013). https://doi.org/10.1007/s00397-012-0661-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0661-7

Keywords

Navigation