Skip to main content
Log in

Axial laminar flow of viscoplastic fluids in a concentric annulus subject to wall slip

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The flow of non-Newtonian fluids in annular geometries is an important problem, especially for the extrusion of polymeric melts and suspensions and for oil and gas exploration. Here, an analytical solution of the equation of motion for the axial flow of an incompressible viscoplastic fluid (represented by the Hershel–Bulkley equation) in a long concentric annulus under isothermal, fully developed, and creeping conditions and subject to true or apparent wall slip is provided. The simplifications of the analytical model for Hershel–Bulkley fluid subject to wall slip also provide the analytical solutions for the axial annular flows of Bingham plastic, power-law, and Newtonian fluids with and without wall slip at one or both surfaces of the annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allende M, Kalyon D (2000) Assessment of particle-migration effects in pressure-driven viscometric flows. J Rheol 44(1):79–90

    Article  CAS  Google Scholar 

  • Aral BK, Kalyon DM (1994) Effects of temperature and surface roughness on time-dependent development of wall slip in steady torsional flow of concentrated suspensions. J Rheol 38:957–972

    Article  CAS  Google Scholar 

  • Aral BK, Kalyon DM (1995) Rheology and extrudability of very concentrated suspensions: effects of vacuum imposition. Plast Rubber Compos Process Appl 24:201–210

    CAS  Google Scholar 

  • Awati KM, Park Y, Weisser E, Mackay ME (2000) Wall slip and shear stresses of polymer melts at high shear rates without pressure and viscous heating effects. J Non-Newton Fluid Mech 89:117–131

    Article  CAS  Google Scholar 

  • Bert CW, Malik M (1996) The differential quadrature method in computational mechanics. App Mech Rev 49:1–28

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Wiley, New York

    Google Scholar 

  • Brochard F, de Gennes PG (1992) Shear dependent slippage at polymer/solid interface. Langmuir 8:3033–3037

    Article  CAS  Google Scholar 

  • Brochard-Wyart F, Gay C, de Gennes PG (1996) Slippage of polymer melts on grafted surfaces. Macromolecules 29:377–382

    Article  CAS  Google Scholar 

  • Brunn P, Abu-Jdayil B (2007) Axial annular flow of plastic fluids: dead zones and plug-free flow. Rheol Acta 46(4):449–454

    Article  CAS  Google Scholar 

  • Chatzimina M, Georgiou G, Housiadas K, Hatzikiriakos SG (2009) Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls. J Non-Newton. Fluid Mech 159:1–9

    Article  CAS  Google Scholar 

  • Chen Y, Kalyon DM, Bayramli E (1993) Effects of surface roughness and the chemical structure of materials of construction on wall slip behavior of linear low density polyethylene in capillary flow. J Appl Polym Sci 50:1169–1177

    Article  CAS  Google Scholar 

  • Civan F, Sliepcevich CM (1984) Application of differential quadrature to transport processes. J Math Anal Appl 93:206–221

    Article  Google Scholar 

  • Cohen Y, Metzner AB (1985) An analysis of apparent slip flow of polymer solutions. J Rheol 29:67

    Article  CAS  Google Scholar 

  • Denn MM (2001) Extrusion instabilities and wall slip. Annual Rev Fluid Mech 33:265–287

    Article  Google Scholar 

  • Escudier MP, Gouldson IW (1995) Concentric annular flow with centerbody rotation of a Newtonian and a shear-thinning liquid. Int J Heat Fluid Flow 16:156–162

    Article  CAS  Google Scholar 

  • Escudier MP, Gouldson IW, Oliveira PJ, Pinho FT (2000) Effects of inner cylinder rotation on laminar flow of a Newtonian fluid through an eccentric annulus. Int J Heat Fluid Flow 21:92–103

    Article  Google Scholar 

  • Escudier MP, P.J. Oliveira PJ, Pinho FT, Smith S (2002a) Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments. Exp Fluids 33:101–111

    CAS  Google Scholar 

  • Escudier MP, P.J. Oliveira PJ, Pinho FT (2002b) Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and inner-cylinder rotation. Int J Heat Fluid Flow 23:52–73

    Article  Google Scholar 

  • Fredrickson AG, Bird RB (1958) Non-Newtonian flow in annuli. J Ind Eng Chem 50:347–352

    Article  CAS  Google Scholar 

  • Gadala-Maria F, Acrivos A (1980) Shear-induced structure in a concentrated suspension of solid spheres. J Rheol 24:799–814

    Article  CAS  Google Scholar 

  • Gevgilili H, Kalyon DM (2001) Step strain flow: wall slip effects and other error sources. J Rheol 45:1–9

    Article  Google Scholar 

  • Gotsis AD, Ji Z, Kalyon DM (1990) 3-D analysis of the flow in co-rotating twin screw extruders. SPE ANTEC Technical Papers 36:139–142

    Google Scholar 

  • Halliday PJ, Smith AC (1995) Estimation of wall slip velocity in the capillary flow of potato granule pastes. J Rheol 39: 139–149

    Article  CAS  Google Scholar 

  • Hanks RW (1979) The axial laminar flow of yield-pseudoplastic fluids in a concentric annulus. Ind Eng Chem Process Des Dev 18:488–493

    Article  CAS  Google Scholar 

  • Hanks RW, Larsen KM (1979) The flow of power-law non-Newtonian fluids in concentric annuli. Ind Eng Chem Fundam 18:33–35

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J Rheol 35:497–523

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1992) Wall slip of molten high density polyethylene. II. Capillary rheometer studies. J Rheol 36:703–741

    Article  CAS  Google Scholar 

  • Huilgol RR, You, Z (2005) Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel–Bulkley fluids. J Non-Newton. Fluid Mech 128:126–143

    Article  CAS  Google Scholar 

  • Jana SC, Kapoor B, Acrivos A (1995) Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles. J Rheol 39:1123–1132

    Article  CAS  Google Scholar 

  • Jiang TQ, Young AC, Metzner AB (1986) The rheological characterization of HPG gels: measurement of slip velocities in capillary tubes. Rheol Acta 25:397

    Article  CAS  Google Scholar 

  • Kalika DS, Denn MM (1987) Wall slip and extrudate distortion in linear low density polyethylene. J Rheol 31:815–834

    Article  CAS  Google Scholar 

  • Kalyon DM, Lawal A, Yazici R, Yaras P, Railkar S (1999) Mathematical modeling and experimental studies of twin-screw extrusion of filled polymers. Polym Eng Sci 39:1139–1151

    Article  CAS  Google Scholar 

  • Kalyon DM, Gokturk H, Yaras P, Aral B (1995) Motion analysis of development of wall slip during die flow of concentrated suspensions. Society of Plastics Engineers ANTEC Technical Papers 41:1130–1134

    Google Scholar 

  • Kalyon D, Gevgilili H (2003) Wall slip and extrudate distortion of three polymer melts. J Rheol 47:683–699

    Article  CAS  Google Scholar 

  • Kalyon D (2005) Apparent slip and viscoplasticity of concentrated suspensions. J Rheol 49:621–640

    Article  CAS  Google Scholar 

  • Kalyon DM, Tang H (2007) Inverse problem solution of squeeze flow for parameters of generalized Newtonian fluid and wall slip. J Non-Newton. Fluid Mech 143:133–140

    Article  CAS  Google Scholar 

  • Kalyon D (2010) An analytical model for steady coextrusion of viscoplastic fluids in thin slit dies with wall slip. Polym Eng Sci 50:652–664

    Article  CAS  Google Scholar 

  • Krieger IM (1994) Axial flow through a narrow annulus. I. The kinetic energy correction. J Rheol 38:141

    Article  CAS  Google Scholar 

  • Kwon TH, Ahn SY (1995) Slip characterization of powder/binder mixtures and its significance in the filling process analysis of powder injection molding. Pow Tech 85:45–55

    Article  CAS  Google Scholar 

  • Lawal A, Kalyon DM, Yilmazer U (1993) Extrusion and lubrication flows of viscoplastic fluids with wall slip. Chem Eng Commun 122:127

    Article  CAS  Google Scholar 

  • Lawal A, Kalyon DM (1994a) Single screw extrusion of viscoplastic fluids subject to different slip coefficients at screw and barrel surfaces. Polym Eng Sci 34:1471–1479

    Article  CAS  Google Scholar 

  • Lawal A, Kalyon DM (1994b) Nonisothermal model of single screw extrusion of generalized Newtonian fluids. Numer Heat Tranf A 26:103–121

    Article  Google Scholar 

  • Lawal A, Kalyon DM (1998) Squeezing flow of viscoplastic fluids subject to wall slip. Polym Eng 38:1793–1804

    Article  CAS  Google Scholar 

  • Leger L, Hervet H, Massey G (1997) The role of attached polymer molecules in wall slip. Trends Polym Sci 5:40–45

    CAS  Google Scholar 

  • Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181: 415–439

    Article  CAS  Google Scholar 

  • Malik M, Civan F (1995) A comparative study of differential quadrature and cubature methods vis-a-vis some conventional techniques in context of convection-diffusion-reaction problems. Chem Eng Sci 50:531–547

    Article  CAS  Google Scholar 

  • Martin PJ, Wilson DI, Bonnett PE (2004) Rheological study of a talc-based paste for extrusion-granulation. J Eur Ceram Soc 24:3155–3168

    Article  CAS  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004a) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48:1295–1320

    Article  CAS  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004b) Slip and flow in soft particle pastes. Phys Rev Lett 92:198302–1–4

    Article  Google Scholar 

  • Meuric OF, Wakeman RJ, Chiu TW, Fisher KA (1998) Numerical flow simulation of viscoplastic fluids in annuli. Can J Chem Eng 76:27–40

    Article  CAS  Google Scholar 

  • Migler KB, Herve H, Leger L (1993) Slip transition of a polymer melt under shear stress. Phys Rev Lett 70:287–290

    Article  CAS  Google Scholar 

  • Mitsuishi N, Aoyagi Y (1973) Non-Newtonian fluid flow in an eccentric annulus. J Chem Eng Jpn 6:402–408

    Article  CAS  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  CAS  Google Scholar 

  • Münstedt H, Schmidt M, Wassner E (2000) Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry. J Rheol 44:413–427

    Article  Google Scholar 

  • Navier C (1823) Memoire sur les lois du mouvement des fluids. Mem Acad R Sci Inst France 6:389–340

    Google Scholar 

  • Nott RP, Brady JF (1994) Pressure-driven flow of suspensions: simulations and theory. J Fluid Mech 275:157–199

    Article  CAS  Google Scholar 

  • Nouar C, Desaubry C, Zenaidi H (1998) Numerical and experimental investigation of thermal convection for a thermodependent Herschel–Bulkley fluid in an annular duct with rotating inner cylinder. Eur J Mech B17:875–900

    Article  Google Scholar 

  • Nouri JM, Umur H, Whitelaw JH (1993) Flow of Newtonian and non-Newtonian fluids in concentric and eccentric annuli. J Fluid Mech 253:617–641

    Article  CAS  Google Scholar 

  • Nouri JM, Whitelaw JH (1994) Flow of Newtonian and non-Newtonian fluids in a concentric annulus with rotation of the inner cylinder. J Fluids Eng 116:821–827

    Article  CAS  Google Scholar 

  • Person TJ, Denn MM (1997) The effect of die materials and pressure-dependent slip on the extrusion of linear low-density polyethylene. J Rheol 41:249–265

    Article  Google Scholar 

  • Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A4:30–40

    Article  Google Scholar 

  • Poyiadji S, Georgiou GC, Kaouri K, Housiadas KD (2012) Perturbation solutions of weakly compressible Newtonian Poiseuille flows with Navier slip at the wall. Rheol Acta. doi:10.1007/s00397–012–0618-x

    Google Scholar 

  • Ramamurthy AV (1986) Wall slip in viscous fluids and influence of materials of construction. J Rheol 30:337–357

    Article  CAS  Google Scholar 

  • Reiner M (1960) Deformation, strain and flow. H.K. Lewis & Co, London

    Google Scholar 

  • Reilly FJ, Price WL (1961) Plastic flow in injection molds. SPE J 1097–1101

  • Tang HS, Kalyon D (2004) Estimation of the parameters of Herschel–Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers. Rheol Acta 43:180–88

    Article  Google Scholar 

  • Tang HS, Kalyon DM (2008a) Unsteady circular tube flow of compressible polymeric liquids subject to pressure-dependent wall slip. J Rheol 52:507–526

    Article  CAS  Google Scholar 

  • Tang HS, Kalyon DM (2008b) Time-dependent tube flow of compressible suspensions subject to pressure dependent wall slip: ramifications on development of flow instabilities. J Rheol 52:1069–1090

    Article  CAS  Google Scholar 

  • Tang HS (2012) Analysis on creeping flows of compressible fluids subject to wall slip. Rheol Acta 51:421–439

    Article  CAS  Google Scholar 

  • Tetlow N, Graham AL, Ingber MS, Subia SR, Mondy LA, Altobelli SA (1998) Particle migration in a Couette apparatus: experiment and modeling. J Rheol 42:307–327

    Article  CAS  Google Scholar 

  • Tiu C, Bhattacharyya S (1974) Developing and fully developed velocity profiles for inelastic power-law fluids in an annulus. AIChE J 20:1140–1144

    Article  CAS  Google Scholar 

  • Vand V (1948) Viscosity of solutions and suspensions: I. Theory. J Phys Colloid Chem 52:277–314

    Article  CAS  Google Scholar 

  • Vinogradov GV, Ivanova LI (1967) Viscous properties of polymer melts and elastomers exemplified by ethylene-propylene copolymer. Rheol Acta 6:209–222

    Article  CAS  Google Scholar 

  • White JL, Han H, Nakajima N, Brzoskowski R (1991) The influence of materials of construction on biconical rotor and capillary measurements of shear viscosity of rubber and its compounds and considerations of slippage. J Rheol 35:167–189

    Article  CAS  Google Scholar 

  • Yilmazer U, Kalyon DM (1989) Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J Rheol 33:1197–1212

    Article  CAS  Google Scholar 

  • Yoshimura A, Prud’homme RK (1988) Wall slip corrections for Couette and parallel disk viscometers. J Rheol 32:53–67

    Article  CAS  Google Scholar 

  • Zhang W, Silvi N, Vlachopoulos J (1995) Modelling and experiments of squeezing flow of polymer melts. Int Polym Process 155–164

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilhan M. Kalyon.

Appendix

Appendix

Axial laminar flow of power-law, Bingham plastic, and Newtonian fluids in a concentric annulus with wall slip at the inner and outer walls

For the annular flow of power-law fluids, there will be two flow zones for true slip (II, IV) and four zones for apparent slip (zones I, II, IV, and V), i.e., the plug flow zone (III) sandwiched in between the two deforming zones II and IV would be missing. Furthermore, \(dV_z^{\rm II} /dr=dV_z^{{\rm IV}} /dr=0\;\mbox{at}\;r=\lambda R\) and, therefore, the equations for the power-law fluid case can be obtained from those of the foregoing section by setting λ 1 = λ 2 = λ and \(\tau _0^\ast =0\). Thus, from Eqs. 11 and 12, the velocity distributions in zones II and IV are

$$ \label{eq28} \!\begin{aligned}[b] V_z^{\rm II} ={}& U_{{\rm s},1} +\left( {\dfrac{\Delta PR}{2mL}} \right)^{\frac{1}{n}}\displaystyle\int\nolimits_{\kappa R}^r \left( {\dfrac{\lambda^2R}{r}- \dfrac{r}{R}} \right)^{\frac{1}{n}}dr, \\ & \;\;\; {\kappa R\le r\le \lambda R} \end{aligned} $$
(26)

and

$$ \label{eq29} \!\begin{aligned}[b] V_z^{{\rm IV}} ={}& U_{{\rm s},2} + \left( {\dfrac{\Delta PR}{2mL}} \right)^{\frac{1}{n}}\displaystyle\int\nolimits_r^R \left( {\dfrac{r}{R}-\dfrac{\lambda^2R}{r}} \right)^{\frac{1}{n}}dr,\\ &\;\;\; {\lambda R\le r\le R,} \end{aligned} $$
(27)

respectively, in which the slip velocities U s,1 and U s,2 are given by Eq. 25. Noting that \(V_z^{\rm II} \left( {\lambda R} \right)= V_z^{{\rm IV}} \left( {\lambda R} \right)\), the equation for determining λ is obtained as

$$ \label{eq30} f\left( {\lambda R} \right)=V_z^{\rm II} \left( {\lambda R} \right)-V_z^{{\rm IV}} \left( {\lambda R} \right)=0. $$
(28)

The flow rate of the power-law fluid through the annulus with apparent slip is obtained (after multiple manipulations of the integral terms following Hanks and Larsen (1979)) as

$$ \begin{array}{rll} \label{eq31} Q&=&\pi \left( {\frac{\Delta PR}{2mL}} \right)^{\frac{1}{n}} \frac{nR^3}{\left( {1+3n} \right)}\\ && \times \left[ {\left( {1-\lambda^2} \right)^{\frac{1}{n}+1}-\frac{1}{\kappa^{\frac{1}{n}-1}}\left( {\lambda ^2-\kappa^2} \right)^{\frac{1}{n}+1}} \right]\\ &&+\, \pi R^2\left( {U_{{\rm s},2} -\kappa^2U_{{\rm s},1} } \right)\\ &&-\,\frac{\pi \lambda^2R^2\left( {n-1} \right)}{\left( {1+3n} \right)}\left( {U_{{\rm s},2} -U_{{\rm s},1} } \right) \end{array} $$
(29)

For U s,1 = U s,2 = 0, flow rate equation for the no-slip case given by Hanks and Larsen (1979) is obtained.

Another case of interest of concentric annular flow problem with wall slip which follows from the general Herschel–Bulkley fluid analysis presented earlier is that of the flow of a Bingham plastic fluid. By setting m = μ and n = 1, for a Bingham plastic fluid, Eqs. 11 and 12 may be simplified as follows:

$$ \begin{array}{rll} \label{eq32} V_z^{\rm II} &=&U_{{\rm s},1} +\left( {\dfrac{\Delta PR^2}{4\mu L}} \right)\\ &&\times\left[ {\kappa^2-\left( {\dfrac{r}{R}} \right)^2-2\tau_0^\ast \left( {\dfrac{r}{R}-\kappa } \right)+2\lambda^2\ln \dfrac{r}{\kappa R}} \right],\\ &&\;\;\;{\kappa R\le r\le\lambda_1 R} \end{array} $$
(30)
$$ \begin{array}{rll} \label{eq33} V_z^{\rm IV} &=&U_{{\rm s},2} +\left( {\frac{\Delta PR^2}{4\mu L}} \right) \\ &&\times\left[ {1-\left( {\frac{r}{R}} \right)^2-2\tau_0^\ast \left( {1-\frac{r}{R}} \right)-2\lambda^2\ln \frac{R}{r}} \right], \\ & & \;\;\;{\lambda_2 R\le r\le R} \end{array} $$
(31)

From the above equations (or from Eqs. 13 and 14), the plug velocity \(U_{plug} =V_z^{\rm II} \left( {\lambda_1 R} \right)=V_z^{\rm IV} \left( {\lambda _2 R} \right)\) may be obtained as

$$ \begin{array}{rll} \label{eq34} U_{plug} &=&U_{{\rm s},1} +\left( {\frac{\Delta PR^2}{4\mu L}} \right)\\ &&\times\left[ {\kappa ^2-\lambda_1^2 -2\tau_0^\ast \left( {\lambda_1 -\kappa } \right)+2\lambda ^2\ln \frac{\lambda_1 }{\kappa }} \right] \end{array} $$
(32a)
$$ \begin{array}{rll} \label{eq34b} U_{plug} &=&U_{{\rm s},2} +\left( {\frac{\Delta PR^2}{4\mu L}} \right)\\ &&\times\left[ {1-\lambda_2^2 -2\tau_0^\ast \left( {1-\lambda_2 } \right)+2\lambda^2\ln \lambda_2 } \right]. \end{array} $$
(32b)

Equating the plug velocity expressions from the above equations and simplifying, the equation for determining λ is obtained as

$$ \label{eq36} {\kern83pt}\lambda^2=\frac{\left( {\frac{4\mu L}{\Delta PR^2}} \right)\left( {U_{{\rm s},1} -U_{{\rm s},2} } \right)-\left( {1-\kappa^2+\lambda_2^2 -\lambda_1^2 } \right)+2\tau_0^\ast\left({1+\kappa -\lambda_2 -\lambda_1 } \right)}{2\ln \frac{\kappa \lambda_2 }{\lambda_1 }}. $$
(33)

Finally, the flow rate may be obtained, from Eq. 16, as

$$ \begin{array}{rll} \label{eq37} Q&=&\left( {\frac{\pi \Delta PR^4}{24\mu L}} \right)\left[ 3\left( {1-\lambda _2^4 +\lambda_1^4 -\kappa^4} \right)\right.\\ &&\;\quad\qquad\qquad-\,4\tau_0^\ast \left( 1-\lambda_2^3 -\lambda_1^3 +\kappa^3 \right)\\ &&\;\quad\qquad\qquad\left.-\,6\lambda^2\left( 1-\lambda_2^2 +\lambda _1^2 -\kappa^2 \right) \right]\\ &&+\,\pi R^2\left( {U_{{\rm s},2} -\kappa^2U_{{\rm s},1} } \right). \end{array} $$
(34)

It may be verified that for U s,1 = U s,2 = 0, the above equations simplify to the corresponding equations of Fredrickson and Bird (1958) for the annular flow of Bingham plastic without slip.

Considering the problem of a Newtonian fluid with shear viscosity, μ, flowing with slip velocities of U s,1 and U s,2 at r = κR and r = R, respectively, the velocity distribution may be obtained from any one of the Eqs. 26 and 27 by setting m = μ and, n = 1, i.e.,

$$ \begin{array}{rll} \label{eq38} V_z &=&\left( {\dfrac{\Delta P\,R^2}{4\mu L}} \right)\left[ {2\lambda^2\ln \frac{r}{\kappa R}-\left( {\left( {\frac{r}{R}} \right)^2-\kappa^2} \right)} \right]\\ &&+\,U_{{\rm s},1} ,\;\;\;\kappa R\,\le \,r\,\le \,R \end{array} $$
(35)

or

$$ \begin{array}{rll} \label{eq39} V_z &=&\left( {\dfrac{\Delta P\,R^2}{4\mu L}} \right)\left[ {2\lambda^2\ln \dfrac{R}{r}+\left( {1-\left( {\dfrac{r}{R}} \right)^2} \right)} \right]\\ &&+\,U_{{\rm s},2} ,\;\;\; \kappa R \le r \le R \end{array} $$
(36)

and

$$ \label{eq40} \lambda^2=\frac{\left( {1-\kappa^2} \right)-\frac{\left( {U_{{\rm s},2} -U_{{\rm s},1} } \right)4\mu L}{\Delta P\,R^2}}{2 \ln \left( {\frac{1}{\kappa }} \right)}. $$
(37)

The flow rate of the Newtonian fluid through the concentric annulus, i.e., \(Q=2\pi \mathop \int\nolimits_{\kappa R}^R V_z rdr\):

$$ \begin{array}{rll} \label{eq41} Q&=&\left( {\frac{\pi \Delta PR^4}{8\mu L}} \right)\left( {1-\kappa^2} \right)\left( {1-2\lambda^2+\kappa^2} \right) \\ &&+\,\pi \left( {U_{{\rm s},2} -\kappa^2U_{{\rm s},1} } \right)R^2 \end{array} $$
(38)

Equations 32 and 33 may be reduced to the no-slip case for the axial annular flow of Newtonian fluids by setting U s,2 = U s,1 = 0 to generate the following well-known solution for the no-slip of Newtonian fluids in an axial annular flow (Bird et al. 2002):

$$ \begin{array}{rll} \label{eq42} \lambda^2&=&\frac{\left( {1-\kappa^2} \right)}{2\ln \left( {\frac{1}{\kappa }} \right)}\;\;\;\mbox{and}\\ Q&=& \left( {\frac{\pi \Delta PR^4}{8\mu L}} \right)\left( {1-\kappa^4- \frac{\left( {1-\kappa^2} \right)^2}{\mbox{ln}\left( {\frac{1}{\kappa }} \right)}} \right) \end{array} $$
(39)

For the apparent slip case, a Newtonian fluid with shear viscosity, μ, subject to apparent slip layers comprised of another Newtonian fluid with viscosity μ b (where μ b < μ), can be considered. Noting that β 1 = δ 1 /μ b and β 2 = δ 2 /μ b , the slip velocities at the two cylinder surfaces are not equal to each other, i.e., U s,1 ≠ U s,2 even if β 1 = β 2 or δ 1 = δ 2 since

$$ \label{eq43} \frac{U_{{\rm s},1} }{U_{{\rm s},2} }=\frac{\beta_1 }{\beta_2 }\frac{\left( {\lambda^2-\kappa^2} \right)}{\kappa \left( {1-\lambda^2} \right)}=\frac{\delta_1 }{\delta_2 }\frac{\left( {\lambda^2-\kappa^2} \right)}{\kappa \left( {1-\lambda^2} \right)}. $$
(40)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyon, D.M., Malik, M. Axial laminar flow of viscoplastic fluids in a concentric annulus subject to wall slip. Rheol Acta 51, 805–820 (2012). https://doi.org/10.1007/s00397-012-0641-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0641-y

Keywords

Navigation