Skip to main content
Log in

A regularization-free method for the calculation of molecular weight distributions from dynamic moduli data

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

There are several models for the determination of molecular weight distributions (MWDs) of linear, entangled, polymer melts via rheometry. Typically, however, models require a priori knowledge of the critical molecular weight, the plateau modulus, and parameters relating relaxation time and molecular weight (e.g., k and α in τ=kMα). Also, in an effort to obtain the most general MWD or to describe certain polymer relaxation mechanisms, models often rely on the inversion of integral equations via regularization. Here, the inversion of integral equations is avoided by using a simple double-reptation model and assuming that the MWD can be described by an analytic function. Moreover, by taking advantage of dimensionless variables and explicit analytic relations, we have developed an unambiguous and virtually parameter-free methodology for the determination of MWDs via rheometry. Unimodal MWDs have been determined using only a priori knowledge of the exponent α and dynamic moduli data. In addition, the uncertainty in rheological MWD determinations has been quantified, and it is shown that the reliability of the predictions is greater for the high-molecular-weight portion of the distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bersted BH, Slee JD (1977) A relationship between steady-state shear melt viscosity and molecular weight distribution in polystyrene. J Appl Polym Sci 21:2631–2644

    Article  CAS  Google Scholar 

  2. Carrot C, Guillet J (1997) From dynamic moduli to molecular weight distribution: a study of various polydisperse linear polymers. J Rheol 41:1203–1220

    Google Scholar 

  3. Cocchini F, Nobile MR (2003) Constrained inversion of rheological data to molecular weight distribution for polymer melts. Rheol Acta 42:232–242

    CAS  Google Scholar 

  4. des Cloizeaux J (1988) Double reptation vs simple reptation in polymer melts. Europhys Lett 5:437–442

    Google Scholar 

  5. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, USA

    Google Scholar 

  6. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647

    Google Scholar 

  7. Guzmán JD (2003) From synthesis to processing: links between polymerization mechanism, molecular weight distribution, rheological behavior, and extrusion. PhD Thesis, Illinois Institute of Technology

    Google Scholar 

  8. Jordan TC, Richards WD (2000) In: Legrand DG, Bendler JT (eds) Handbook of polycarbonate science and technology, Chapter 9. Dekker, New York

  9. Léonardi F, Majesté J-C, Allal A, Marin G (2000) Rheological models based on the double reptation mixing rule: the effects of a polydisperse environment. J Rheol 44:675–692

    Article  Google Scholar 

  10. Léonardi F, Allal A, Marin G (2002) Molecular weight distribution from viscoelastic data: the importance of tube renewal and Rouse modes. J Rheol 46:209–224

    Article  Google Scholar 

  11. Llorens J, Rudé E, Marcos RM (2003) Polydispersity index from linear viscoelastic data: unimodal and bimodal linear polymer melts. Polymer 44:1741–1750

    Article  CAS  Google Scholar 

  12. Maier D, Eckstein A, Friedrich C, Honerkamp J (1998) Evaluation of models combining rheological data with the molecular weight distribution. J Rheol 42:1153–1173

    Article  CAS  Google Scholar 

  13. Malkin A, Teishev AE (1991) Flow curve-molecular weight distribution: is the solution of the inverse problem possible? Polym Eng Sci 31:1590–1596

    CAS  Google Scholar 

  14. Mead DW (1994a) Determination of molecular weight distributions of linear flexible polymers from linear viscoelastic material functions. J Rheol 38:1797–1827

    Article  CAS  Google Scholar 

  15. Mead DW (1994b) Numerical interconversion of linear viscoelastic material functions. J Rheol 38:1769–1795

    Article  CAS  Google Scholar 

  16. Nobile MR, Cocchini F (2000) Predictions of linear viscoelastic properties for polydisperse entangled polymers. Rheol Acta 39:152–162

    Article  CAS  Google Scholar 

  17. Nobile MR, Cocchini F (2001) Evaluation of molecular weight distribution from dynamic moduli. Rheol Acta 40:111–119

    Article  CAS  Google Scholar 

  18. Nobile MR, Cocchini F, Lawler JV (1996) On the stability of molecular weight distributions as computed from the flow curves of polymer melts. J Rheol 40:363–382

    Article  CAS  Google Scholar 

  19. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran: The art of scientific computing, 2nd edn. Cambridge University Press, USA

    Google Scholar 

  20. Roths T, Maier D, Friedrich C, Marth M, Honerkamp J (2000) Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method. Rheol Acta 39:163–173

    Article  CAS  Google Scholar 

  21. van Ruymbeke E, Keunings R, Bailly C (2002b) Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data. J Non Newtonian Fluid Mech 105:153–175

    Article  Google Scholar 

  22. van Ruymbeke E, Keunings R, Stéphenne V, Hagenaars A, Bailly C (2002a) Evaluation of reptation models for predicting the linear viscoelastic properties of entangled linear polymers. Macromolecules 35:2689–2699

    Article  Google Scholar 

  23. Shaw MT, Tuminello WH (1994) A closer look at the MWD-viscosity transform. Polym Eng Sci 34:159–165

    CAS  Google Scholar 

  24. Thimm W, Friedrich C, Marth M, Honerkamp J (1999) An analytical relation between relaxation time spectrum and molecular weight distribution. J Rheol 43:1663–1672

    Article  CAS  Google Scholar 

  25. Tsenoglou C (1991) Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers. Macromolecules 24:1762–1767

    CAS  Google Scholar 

  26. Wasserman SH (1993) The relationship between polydispersity and linear viscoelasticity in entangled polymer melts. PhD Thesis, Princeton University

  27. Wasserman SH, Graessley WW (1992) Effects of polydispersity on linear viscoelasticity in entangled polymer melts. J Rheol 36:543–572

    Article  CAS  Google Scholar 

  28. Wasserman SH, Graessley WW (1996) Predictions of linear viscoelastic response for entangled polyolefin melts from molecular weight distributions. Polym Eng Sci 36:852–861

    Article  Google Scholar 

  29. Wu S (1987) Chain entanglement and melt viscosity of compatible polymer blends: poly(methylmethacrylate) and poly(styrene-acrylonitrile). Polymer 28:1144–1148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank E. van Ruymbeke from the Université Catholique de Louvain and F. Léonardi from the Université de Pau et des Pays de l’Audour for supplying rheological and chromatographic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D. Schieber.

Appendix

Appendix

If all the chains in a given polymer sample are too short to entangle, the relaxation modulus can be described solely in terms of Rouse processes, e.g. [2]

$$ \frac{{G(t)}} {{G_{\text{N}}^{\text{o}} }} = \frac{{\pi ^2 M_{\text{C}} }} {{12}}\int\limits_0^\infty {\frac{{\exp [ - t/\tau_{\text{R}} (M)]}} {M}W(M)\frac{{dM}} {M},} $$
(26)

where the Rouse relaxation time τR is proportional to M2. Equation 26 can be combined with [5]

$$ G(t) = \int\limits_0^\infty {h_{\text{R}} (\tau_{\text{R}})\exp \left[ { - t/\tau_{\text{R}} } \right]\frac{{d\tau_{\text{R}} }} {{\tau_{\text{R}} }}} = 2\int\limits_0^\infty {\tilde h_{\text{R}} (M)\exp \left[ { - t/\tau_{\text{R}} (M)} \right]\frac{{dM}} {M}} $$
(27)

to obtain

$$ \int\limits_0^\infty {\left[ {2\tilde h_{\text{R}} (M)\exp \left[ { - t/\tau_R (M)} \right] - \frac{{\pi ^2 M_{\text{C}} }} {{12}}G_{\text{N}}^{\text{o}} \frac{{\exp [ - t/\tau_{\text{R}} (M)]}} {M}W(M)} \right]\frac{{dM}} {M}} = 0. $$
(28)

Equation 28 is satisfied when

$$ \frac{{2\tilde h_{\text{R}} (M)}} {{G_{\text{N}}^{\text{o}} }} = \frac{{\pi ^2 M_{\text{C}} }} {{12}}\frac{{W(M)}} {M}. $$
(29)

To obtain Eq. 14, let \(H_{\text{R}} (N) = 2\tilde h_{\text{R}} (mN)/G_{\text{N}}^{\text{o}} .\) In general, as in Eqs (12) and (13), both reptation and Rouses processes need to be considered.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán, J.D., Schieber, J.D. & Pollard, R. A regularization-free method for the calculation of molecular weight distributions from dynamic moduli data. Rheol Acta 44, 342–351 (2005). https://doi.org/10.1007/s00397-004-0414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0414-3

Keywords

Navigation