Skip to main content
Log in

Counterion-specific clouding in aqueous anionic surfactant: a case of Hofmeister-like series

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two ionic surfactants (sodium dodecylsulphate (SDS) and sodium dodecylbenzenesuphonate (SDBS)) are chosen, and effect of addition of quaternary bromide or chloride (tetra-n-butylammonium bromide, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, tetra-npentylammonium bromide and benzyl tributylammonium chloride) has been studied on the cloud point (CP) behaviour in aqueous solution. CP behaviour was observed due to dehydration of headgroup region in presence of quaternary counterion. Order of counterion to decrease CP is as follows: TPeA+ > BTA+ > TBP+ > TPhP+ > TBA+ for SDS and TPeA+ > TPhP+ > BTA+ > TBP+ > TBA+ for SDBS. CP data have been used to select surfactant + salt system. Effect of additives (carbohydrate, amino acid or vitamin), on the CP, has been seen on above such selected systems. Additive may either decrease or increase the CP, depending upon the structure of counterion and/or the additive. Counterion (cations) can be arranged in an order like Hofmeister series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong R, Hao J (2010) Complex fluids of poly(oxyethylene) monoalkyl ether non-ionic surfactants. Chem Rev 110:4978–5022

    Article  CAS  Google Scholar 

  2. Kumar S, Sharma D, Kabir-ud-Din (2000) Cloud point phenomenon in anionic surfactant + quaternary bromide systems and its variation with additives. Langmuir 16:6821–6824

    Article  CAS  Google Scholar 

  3. Bales BL, Zana R (2004) Cloud point of aqueous solutions of tetrabutylammonium dodecyl sulfate is a function of the concentration of counter ions in the aqueous phase. Langmuir 20:1579–1581

    Article  CAS  Google Scholar 

  4. Warr GG, Zemb TN, Drifford M (1990) Liquid-liquid phase separation in cationic micellar solutions. J Phys Chem 94:3086–3092

    Article  CAS  Google Scholar 

  5. Kumar S, Bhadoria A, Patel H, Aswal VK (2012) Morphologies near cloud point in aqueous ionic surfactant: scattering and NMR studies. J Phys Chem B 116:3699–3703

    Article  CAS  Google Scholar 

  6. Bhadoria A, Kumar S, Aswal VK, Kumar S (2015) Mechanistic approach on heating induced growth of anionic surfactants: a clouding phenomenon. RSC Adv 5:23778–23786

    Article  CAS  Google Scholar 

  7. Casero I, Sicilia D, Rubio S, Perez-Bendito D (1999) An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds. Anal Chem 71:4519–4526

    Article  CAS  Google Scholar 

  8. Kumar S, Alam MS, Parveen N, Kabir-ud-Din (2006) Influence of additives on the clouding behaviour of amphiphilic drug solutions. Colloid Polymer Sci 284:1459–1463

    Article  CAS  Google Scholar 

  9. Alam MS, Kumar S, Naqvi AZ, Kabir-ud-Din (2006) Effect of electrolytes on the cloud point of chlorpromazine hydrochloride solutions. Colloids Surf B 53:60–63

    Article  CAS  Google Scholar 

  10. Goel SK (1998) Measuring detergency of oily soils in the vicinity of phase inversion temperatures of commercial nonionic surfactants using an oil-soluble dye. J Surf Deterg 1:221–226

    Article  CAS  Google Scholar 

  11. Manet S, Karpichev Y, Dedovets D, Oda R (2013) Effect of Hofmeister and alkylcarboxylate anionic counterions on the Krafft temperature and melting temperature of cationic gemini surfactants. Langmuir 29:3518–3526

    Article  CAS  Google Scholar 

  12. Nostro PL, Ninham BW (2012) Hofmeister phenomenon: an update on ion specificity in biology. Chem Rev 112:2286–2322

    Article  Google Scholar 

  13. Salis A, Ninham BW (2014) Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem Soc Rev 43:7358–7377

    Article  CAS  Google Scholar 

  14. Ninham BW, Nostro PL (2010) Molecular forces and self assembly, in colloid, nano science and biology. Cambridge University Press, Cambridge, U. K

    Book  Google Scholar 

  15. Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical process and biological structure. Biophys Chem 128:95–104

    Article  CAS  Google Scholar 

  16. Saitoh T, Hinze WL (1991) Concentration of hydrophobic organic compounds and extraction of protein using alkylammoniosulfate zwitterionic surfactant mediated phase separations (cloud point extractions). Anal Chem 63:2520–2525

    Article  CAS  Google Scholar 

  17. Carabias-Martınez R, Rodrıguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón JL, Garcıa-Pinto C, Laespada EF (2000) Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J Chromatography A 902:251–265

    Article  Google Scholar 

  18. Kumar S, Patel H, Patil SR (2013) Test of Hofmeister-like series of anionic headgroups: clouding and micellar growth. Colloid Polym Sci 291:2069–2077

    Article  CAS  Google Scholar 

  19. Vlachy N, Jagoda-Cwiklik B, Vacha R, Touraud D, Jungwrith P, Kunz W (2009) Hofmeister series and specific interactions of charged head groups with aqueous ions. Adv Colloid Interf Sci 146:42–47

    Article  CAS  Google Scholar 

  20. Kabir-ud-Din Rub MA, Sheikh MS (2010) Cloud-point modulation of an amphiphilic drug with pharmaceutical excipients. J Chem Eng Data 55:5642–5652

  21. Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168

    Article  CAS  Google Scholar 

  22. Da Silva RC, Loh W (1998) Effect of additives on the cloud points of aqueous solutions of ethylene oxide–propylene oxide–ethylene oxide block copolymers. J Colloid Interface Sci 202:385–390

    Article  Google Scholar 

  23. Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    Article  CAS  Google Scholar 

  24. Cox MF, Borys NF, Matson TP (1985) Interactions between LAS and nonionic surfactants. J Am Oil Chem Soc 62:1139–1143

    Article  CAS  Google Scholar 

  25. Vlachy N, Drechsler M, Verbavatz JM, Touraud D, Kunz W (2008) Role of the surfactant headgroup on the counterion specificity in the micelle-to-vesicle transition through salt addition. J Colloid Interface Sci 319:542–548

    Article  CAS  Google Scholar 

  26. Agam G (1994) Industrial chemicals: their characteristics and development. Elsevier (Amsterdam), Chapter 4, p 60

  27. Ninham BW, Yaminsky V (1997) Ion binding and ion specificity: the Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13:2097–2108

    Article  CAS  Google Scholar 

  28. Kumar S, Sharma D, Khan ZA, Kabir-ud-Din (2002) Salt-induced cloud point in anionic surfactant solution: role of the headgroup and additives. Langmuir 18:4205–4209

    Article  CAS  Google Scholar 

  29. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28

    Article  CAS  Google Scholar 

  30. Schwuger MJ (1971) Effect of structure-forming and structure-disturbing agent on the adsorption and diffusion of surfactants in water. Ber Bunsen-Gen Phys Chem 75:167

    Article  CAS  Google Scholar 

  31. Liu Y, Zou C, Wang T, Li M (2014) Density surface tension and cloud point of aqueous solutions of β-cyclodextrin-polyethylene glycol. J Chem Eng Data 59:3773–3778

    Article  CAS  Google Scholar 

  32. Naqvi AZ, Rub MA, Kabir-ud-Din (2011) Effects of pharmaceutical excipients on cloud points of amphiphilic drugs. J Colloid Interf Sci 361:42–48

    Article  CAS  Google Scholar 

  33. Ahmad T, Kumar S, Khan ZA, Kabir-ud-Din (2007) Additives as CP modifiers in an anionic micellar solution. Colloids Surf A Physicochem Eng Asp 294:130–136

    Article  CAS  Google Scholar 

  34. Dougherty DA (1996) Cation-pi interactions in chemistry and biology: a new view benzene, Phe, Try, and Trip. Science 271:163–168

    Article  CAS  Google Scholar 

  35. Drecher MR, Simnick AJ, Fischer K, Smith RJ, Patel A, Schmidt M, Chilkoli A (2008) Temperature triggered self assembly of polypeptides into multivalent spherical micelles. J Am Chem Soc 130:687–694

    Article  Google Scholar 

  36. Matema K, Goralska E, Sobczynska A, Szymanowski J (2004) Recovery of various phenols and phenyl amines by micellar enhanced ultra filtration and cloud point separation. Green Chem 6:176–182

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Solvay Specialties, India Pvt. Limited, for providing a financial support. SKY is also thankful for a research fellowship. We also appreciate the help extended by Heads, Chemistry and Applied Chemistry Departments, The Maharaja Sayajirao University of Baroda, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.K., Kumar, S. Counterion-specific clouding in aqueous anionic surfactant: a case of Hofmeister-like series. Colloid Polym Sci 295, 869–876 (2017). https://doi.org/10.1007/s00396-017-4074-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4074-0

Keywords

Navigation