Skip to main content

Advertisement

Log in

Approximate analytic expressions for the electrostatic interaction energy between two colloidal particles based on the modified Poisson-Boltzmann equation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Simple analytic expressions are derived for the electrostatic interaction energy between two charged colloidal particles in an electrolyte solution. The obtained expressions are based on an approximate form of the modified Poisson-Boltzmann equation taking into account the ion size effects through Carnahan-Starling activity coefficients of electrolyte ions. We derive the electrostatic interaction energy between two parallel plates on the basis of the linear superposition approximation. We further employ Derjaguin’s approximation to derive the corresponding expressions for the electrostatic interaction energy between two spheres, two parallel cylinders, or two crossed cylinders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim USSR 14:633–662

    Google Scholar 

  2. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  3. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134

    Article  CAS  Google Scholar 

  4. Ohshima H, Furusawa K (eds) (1998) Electrical phenomena at interfaces, fundamentals, measurements, and applications, 2nd edition, revised and expanded. Dekker, New York

    Google Scholar 

  5. Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York

    Google Scholar 

  6. Lyklema J (2005) Fundamentals of interface and colloid science, volume IV, chapter 3. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  7. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  8. Ohshima H (2010) Biophysical chemistry of biointerfaces. Wiley, Hoboken

    Book  Google Scholar 

  9. Ohshima H (ed) (2012) Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in nano-, bio-, and environmental sciences. Wiley, Hoboken

    Google Scholar 

  10. Sparnaay MJ (1972) Ion-size corrections of the Poisson-Boltzmann equation. J Electroanal Chem 37:65–70

    Article  CAS  Google Scholar 

  11. Adamczyk Z, Warszyński P (1996) Role of electrostatic interactions in particle adsorption. Adv in Colloid Interface Sci 63:41–149

    Article  CAS  Google Scholar 

  12. Biesheuvel PW, van Soestbergen M (2007) Counterion volume effects in mixed electrical double layers. J Colloid Interface Sci 316:490–499

    Article  CAS  Google Scholar 

  13. Lopez-Garcia JJ, Horno J, Grosse C (2011) Poisson-Boltzmann description of the electrical double layer including ion size effects. Langmuir 27:13970–13974

    Article  CAS  Google Scholar 

  14. Lopez-Garcia JJ, Horno J, Grosse C (2012) Equilibrium properties of charged spherical colloidal particles suspended in aqueous electrolytes: finite ion size and effective ion permittivity effects. J Colloid Interface Sci 380:213–221

    Article  CAS  Google Scholar 

  15. Giera B, Henson N, Kober EM, Shell MS, Squires TM (2015) Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations. Langmuir 31:3553–3562

    Article  CAS  Google Scholar 

  16. Lopez-Garcia JJ, Horno J, Grosse C (2016) Ion size effects on the dielectric and electrokinetic properties in aqueous colloidal suspensions. Curr Opinion in Colloid Interface 24:23–31

    Article  CAS  Google Scholar 

  17. Bikerman JJ (1942) Structure and capacity of electrical double layer. Philos Mag 33:384–397

    Article  CAS  Google Scholar 

  18. Hill TL (1962) Statistical thermodynamics. Addison-Westley, Reading, MA

    Google Scholar 

  19. Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51:635–636

    Article  CAS  Google Scholar 

  20. Ohshima H (2016) An approximate analytic solution to the modified Poisson-Boltzmann equation. Effects of ionic size. Colloid Polym Sci 294:2121–2125

    Article  CAS  Google Scholar 

  21. Ohshima H, Healy TW, White LR (1984) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential. J Colloid Interface Sci 90:17–26

    Article  Google Scholar 

  22. Wilemski G (1982) Weak repulsive interactions between dissimilar electrical double layers. J Colloid Interface Sci 88:111–116

    Article  CAS  Google Scholar 

  23. Ohshima H (1995) Effective surface potential and double-layer interaction of colloidal particles. J Colloid Interface Sci 174:45–52

    Article  CAS  Google Scholar 

  24. Derjaguin BV (1934) Untersuchungen über die Reibung und Adhäsion, IV. Kolloid Z 69:155–164

    Article  Google Scholar 

  25. Sparnaay MJ (1959) The interaction between two cylinder shaped colloidal particles. Recueil 78:680–709

    Article  CAS  Google Scholar 

  26. Ohshima H, Hyono A (2009) Electrostatic interaction between two cylindrical soft particles. J Colloid Interface Sci 333:202–208

    Article  CAS  Google Scholar 

  27. Ohshima H (2014) Approximate analytic expression for the stability ratio of colloidal dispersions. Colloid Polym Sci 292:2269–2274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Source of funding

The author declares no sources of funding.

Appendix

Appendix

Analytic expressions for the interaction between two parallel similar plates at separation h can be derived on the basis of the modified Poisson-Boltzmann equation (19). The interaction force P pl(h) per unit area between the two plates is given by

$$ {P}_{\mathrm{pl}}(h)=4nkT\frac{1}{g\left({\phi}_{\mathrm{B}}\right)} \ln \left[1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left(\frac{y_{\mathrm{m}}}{2}\right)\right] $$
(52)

with

$$ g\left({\phi}_{\mathrm{B}}\right)=\frac{16{\phi}_{\mathrm{B}}}{1+8{\phi}_{\mathrm{B}}} $$
(53)

where y m is the scaled potential at the midpoint x = h/2 between the two plates. Eq. (52) can be derived from Eq. (35) by choosing h/2 as x′. Note that Eq. (52) can be applied for both of the constant surface potential and surface charge density models. For the constant surface potential model, y m is related to the scaled surface potential y o  = zeψ o /kT, viz.,

$$ \kappa h=\sqrt{g\left({\phi}_{\mathrm{B}}\right)}{\mathit{\int}}_{\left|{y}_{\mathrm{m}}\right|}^{\left|{y}_{\mathrm{o}}\right|}\frac{dy}{\sqrt{ \ln \left[\frac{1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left(y/2\right)}{1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left({y}_{\mathrm{m}}/2\right)}\right]}} $$
(54)

which is derived by applying Eq. (20) for the system of two parallel plates. For the constant surface charge density model, on the other hand, we have

$$ \kappa h=\sqrt{g\left({\phi}_{\mathrm{B}}\right)}{\mathit{\int}}_{\left|{y}_{\mathrm{m}}\right|}^{\left|y(0)\right|}\frac{dy}{\sqrt{ \ln \left[\frac{1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left(y/2\right)}{1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left({y}_{\mathrm{m}}/2\right)}\right]}} $$
(55)

Note that the scaled surface potential y (0), which is a function of the plate separation h, is related to the scaled unperturbed surface potential y o  = zeψ o /kT in the absence of interaction (h = ∞) by

$$ {\sigma}^2={\left(\frac{2{\varepsilon}_{\mathrm{r}}{\varepsilon}_{\mathrm{o}}\kappa kT}{ze}\right)}^2\frac{1}{g\left({\phi}_{\mathrm{B}}\right)} \ln \left[\frac{1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left(y(0)/2\right)}{1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left({y}_{\mathrm{m}}/2\right)}\right] $$
(56)

which can be derived by integrating Eq. (19) once and applying the boundary condition: /dx| x=0 + =  − σ/ε r ε o and /dx| x = h/2 = 0 (from symmetry of the system). The surface charge density σ of the plates is related to the scaled unperturbed surface potential y o  = zeψ o /kT (in the absence of interaction) by

$$ \sigma =\mathrm{s}\mathrm{g}\mathrm{n}\left({\psi}_{\mathrm{o}}\right)\frac{2{\varepsilon}_{\mathrm{r}}{\varepsilon}_{\mathrm{o}}\kappa kT}{ze}\sqrt{\frac{1}{g\left({\phi}_{\mathrm{B}}\right)}\cdot \ln \left[1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left(\frac{y_{\mathrm{o}}}{2}\right)\right]} $$
(57)

By combining Eqs. (56) and (57), we obtain

$$ 1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left({y}_{\mathrm{o}}/2\right)=\frac{1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left(y(0)/2\right)}{1+g\left({\phi}_{\mathrm{B}}\right){ \sinh}^2\left({y}_{\mathrm{m}}/2\right)} $$
(58)

Equations (55) and (58) form coupled equations for y m for the given values of y o and κh.

Once the value of y m is obtained from Eq. (54) for the constant potential model (in which y(0) is always equal to the unperturbed surface potential y o) or the coupled Eqs. (55) and (58) for the constant surface charge density model, one can calculate the interaction force P pl(h) via Eq. (52).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Approximate analytic expressions for the electrostatic interaction energy between two colloidal particles based on the modified Poisson-Boltzmann equation. Colloid Polym Sci 295, 289–296 (2017). https://doi.org/10.1007/s00396-016-4005-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-4005-5

Keywords

Navigation