Skip to main content
Log in

Stabilizing silica nanoparticles in high saline water by using ionic surfactants for wettability alteration application

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Wettability alteration is one of the main methods for increasing recovery of oil-wet reservoirs. Chemical modifiers like surfactants and nanoparticles can alter the wettability of a surface from strongly oil-wet to water-wet. Small size and high surface area of nanoparticles provide these materials to permeate through micrometer-sized rock pores and to alter their surface wettability. Therefore, many studies have focused on the use of nanoparticles in enhanced oil recovery (EOR). However, instability of these particles in high saline water limits their application at practical scale. In this work, the effects of two ionic surfactants (sodium dodecyl sulfate (SDS) and N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)) on the stability of nano-silica (SiO2) and gamma nano-alumina (γ-Al2O3) nanoparticles have been studied by measuring the zeta potential and the UV adsorption of some nanofluids. The effects of surfactant concentration and nanofluid salinity on the stabilizing performance of the surfactants have also been investigated. Based on surfactant head group and nanoparticle surface charges, two different mechanisms have been proposed to explain surfactant and nanoparticle adsorption behavior. Finally, the effect of stabilized silica-based nanofluids on oil-brine interfacial tension (IFT) and the wettability of a carbonate rock has been explored. According to zeta potential and contact angle measurements, SDS increased the stability of SiO2 nanoparticles in highly concentrated electrolytes. Furthermore, it intensified the performance of nanoparticles in altering the wettability of a strongly oil-wet rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ju B, Fan T (2009) Experimental study and mathematical model of nanoparticle transport in porous media. Powder Technol 192(2):195–202

    Article  CAS  Google Scholar 

  2. Zhang H, Nikolov A, Wasan D (2014) Enhanced oil recovery (EOR) using nanoparticle dispersions: underlying mechanism and imbibition experiments. Energy Fuel 28(5):3002–3009

    Article  CAS  Google Scholar 

  3. Ogolo N, Olafuyi O, Onyekonwu M (2012) Enhanced oil recovery using nanoparticles. In: SPE Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers

  4. Kiani S, Mansouri Zadeh M, Khodabakhshi S, Rashidi A, Moghadasi J (2016) Newly prepared Nano gamma alumina and its application in enhanced oil recovery: an approach to low-salinity waterflooding. Energy Fuel. doi:10.1021/acs.energyfuels.5b03008

    Google Scholar 

  5. Mcelfresh PM, Wood M, Ector D (2012) Stabilizing nano particle dispersions in high salinity, high temperature downhole environments. In: SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers

  6. Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337(2):439–448

    Article  CAS  Google Scholar 

  7. Ma X-k, Lee N-H, Oh H-J, Kim J-W, Rhee C-K, Park K-S, Kim S-J (2010) Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids Surf A Physicochem Eng Asp 358(1–3):172–176. doi:10.1016/j.colsurfa.2010.01.051

    Article  CAS  Google Scholar 

  8. Ueno K, Inaba A, Kondoh M, Watanabe M (2008) Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids. Langmuir 24(10):5253–5259

    Article  CAS  Google Scholar 

  9. Jain N, Wang Y, Jones SK, Hawkett BS, Warr GG (2009) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6):4465–4472

    Article  Google Scholar 

  10. Lourenco C, Teixeira M, Simões S, Gaspar R (1996) Steric stabilization of nanoparticles: size and surface properties. Int J Pharm 138(1):1–12

    Article  CAS  Google Scholar 

  11. Sharma KP, Aswal VK, Kumaraswamy G (2010) Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions. J Phys Chem B 114(34):10986–10994

    Article  CAS  Google Scholar 

  12. Ray D, Aswal V, Kohlbrecher J (2015) Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system. J Appl Phys 117(16):164310

    Article  Google Scholar 

  13. Kvitek L, Panáček A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834

    Article  CAS  Google Scholar 

  14. Zheng X, Zhu L, Yan A, Wang X, Xie Y (2003) Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. J Colloid Interface Sci 268(2):357–361

    Article  CAS  Google Scholar 

  15. Ahualli S, Iglesias G, Wachter W, Dulle M, Minami D, Glatter O (2011) Adsorption of anionic and cationic surfactants on anionic colloids: supercharging and destabilization. Langmuir 27(15):9182–9192

    Article  CAS  Google Scholar 

  16. Iglesias GR, Wachter W, Ahualli S, Glatter O (2011) Interactions between large colloids and surfactants. Soft Matter 7(10):4619–4622

    Article  CAS  Google Scholar 

  17. Nooney RI, White A, O’Mahony C, O’Connell C, Kelleher SM, Daniels S, McDonagh C (2015) Investigating the colloidal stability of fluorescent silica nanoparticles under isotonic conditions for biomedical applications. J Colloid Interface Sci 456:50–58

    Article  CAS  Google Scholar 

  18. Lee L-H (1993) Roles of molecular interactions in adhesion, adsorption, contact angle and wettability. J Adhes Sci Technol 7(6):583–634

    Article  CAS  Google Scholar 

  19. Derjaguin B, Churaev N, Muller V (1987) Wetting films. Surface forces. Springer, In, pp. 327–367

    Google Scholar 

  20. Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423(6936):156–159

    Article  CAS  Google Scholar 

  21. Wasan D, Nikolov A, Kondiparty K (2011) The wetting and spreading of nanofluids on solids: role of the structural disjoining pressure. Curr Opin Colloid Interface Sci 16(4):344–349

    Article  CAS  Google Scholar 

  22. Trokhymchuk A, Henderson D, Nikolov A, Wasan DT (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17(16):4940–4947

    Article  CAS  Google Scholar 

  23. Chengara A, Nikolov AD, Wasan DT, Trokhymchuk A, Henderson D (2004) Spreading of nanofluids driven by the structural disjoining pressure gradient. J Colloid Interface Sci 280(1):192–201

    Article  CAS  Google Scholar 

  24. Roustaei A, Moghadasi J, Bagherzadeh H, Shahrabadi A (2012) An experimental investigation of polysilicon nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration. In: SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers

  25. Karimi A, Fakhroueian Z, Bahramian A, Pour Khiabani N, Darabad JB, Azin R, Arya S (2012) Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energy Fuel 26(2):1028–1036

    Article  CAS  Google Scholar 

  26. Giraldo J, Benjumea P, Lopera S, Cortés FB, Ruiz MA (2013) Wettability alteration of sandstone cores by alumina-based nanofluids. Energy Fuel 27(7):3659–3665

    Article  CAS  Google Scholar 

  27. Ju B, Fan T, Ma M (2006) Enhanced oil recovery by flooding with hydrophilic nanoparticles. China Particuology 4(01):41–46

    Article  CAS  Google Scholar 

  28. Hendraningrat L, Li S, Torsæter O (2013) A coreflood investigation of nanofluid enhanced oil recovery. J Pet Sci Eng 111:128–138

    Article  CAS  Google Scholar 

  29. Seid Mohammadi M, Moghadasi J, Naseri S (2014) An experimental investigation of wettability alteration in carbonate reservoir using γ-Al2O3 nanoparticles. Iranian Journal of Oil & Gas Science and Technology 3(2):18–26

    Google Scholar 

  30. Hendraningrat L, Torsæter O (2014) Effects of the initial rock wettability on silica-based nanofluid-enhanced oil recovery processes at reservoir temperatures. Energy Fuel 28(10):6228–6241

    Article  CAS  Google Scholar 

  31. Nazari Moghaddam R, Bahramian A, Fakhroueian Z, Karimi A, Arya S (2015) Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy Fuel 29(4):2111–2119

    Article  CAS  Google Scholar 

  32. Al-Anssari S, Barifcani A, Wang S, Iglauer S (2016) Wettability alteration of oil-wet carbonate by silica nanofluid. J Colloid Interface Sci 461:435–442

    Article  CAS  Google Scholar 

  33. Sefiane K, Skilling J, MacGillivray J (2008) Contact line motion and dynamic wetting of nanofluid solutions. Adv Colloid Interf Sci 138(2):101–120

    Article  CAS  Google Scholar 

  34. Ranganathan R, Peric M, Bales BL (1998) Time-resolved fluorescence quenching measurements of the aggregation numbers of normal sodium alkyl sulfate micelles well above the critical micelle concentrations. J Phys Chem B 102(43):8436–8439

    Article  CAS  Google Scholar 

  35. Paul BC, Ismail K (1993) Micellization of sodium dodecyl sulfate in sodium acetate-acetic acid buffer. A conductivity study. Bull Chem Soc Jpn 66(3):703–708

    Article  CAS  Google Scholar 

  36. Paul B, Islam S, Ismail K (1998) Effect of acetate and propionate co-ions on the micellization of sodium dodecyl sulfate in water. J Phys Chem B 102(40):7807–7812

    Article  CAS  Google Scholar 

  37. Ikeda S (1991) Stability of spherical and rod-like micelles of ionic surfactants, in relation to their counterion binding and modes of hydration. Colloid Polym Sci 269(1):49–61

    Article  CAS  Google Scholar 

  38. Dutkiewicz E, Jakubowska A (2002) Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles. Colloid Polym Sci 280(11):1009–1014

    Article  CAS  Google Scholar 

  39. Li N, Liu S, Luo H (2002) A new method for the determination of the first and second cmc in CTAB solution by resonance Rayleigh scattering technology. Anal Lett 35(7):1229–1238

    Article  CAS  Google Scholar 

  40. Israelachvili JN (2011) Intermolecular and surface forces: revised third edition. Academic press

  41. Andreas J, Hauser E, Tucker W (1938) Boundary tension by pendant drops1. J Phys Chem 42(8):1001–1019

    Article  CAS  Google Scholar 

  42. Thibaut A, Misselyn-Bauduin A-M, Grandjean J, Broze G, Jérôme R (2000) Adsorption of an aqueous mixture of surfactants on silica. Langmuir 16(24):9192–9198

    Article  CAS  Google Scholar 

  43. Penfold J, Staples E, Tucker I, Thomas R (2002) Adsorption of mixed anionic and nonionic surfactants at the hydrophilic silicon surface. Langmuir 18(15):5755–5760

    Article  CAS  Google Scholar 

  44. Penfold J, Tucker I, Staples E, Thomas R (2004) Manipulation of the adsorption of ionic surfactants onto hydrophilic silica using polyelectrolytes. Langmuir 20(17):7177–7182

    Article  CAS  Google Scholar 

  45. Tadros TF (2006) Applied surfactants: principles and applications. Wiley

  46. Liu Y, Tourbin M, Lachaize S, Guiraud P (2013) Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere 92(6):681–687

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Moghadasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Table 5 Properties of prepared samples

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Songolzadeh, R., Moghadasi, J. Stabilizing silica nanoparticles in high saline water by using ionic surfactants for wettability alteration application. Colloid Polym Sci 295, 145–155 (2017). https://doi.org/10.1007/s00396-016-3987-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3987-3

Keywords

Navigation