Skip to main content
Log in

Interactions between pluronic block polyether and CTAB at air/water interface: interfacial dilational rheology study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The interactions between Pluronic block polyethers (L64 and 17R4) and cetyltrimethyl ammonium bromide (CTAB) were investigated by the measurement of the interfacial dilational viscoelasticity. The dilational moduli of the Pluronic block polyether/CTAB solutions firstly increased, passed through the maximum, and then decreased with the increasing concentration of CTAB. 17R4/CTAB mixed solutions have much larger dilational moduli than L64/CTAB systems, which means that 17R4 and CTAB have stronger interactions than L64 and CTAB. The dilational moduli of 17R4/CTAB systems were different from L64/CTAB systems in the presence of NaBr. The dilational moduli of the L64/CTAB mixed solutions decreased firstly, passed through the minimum value, and then increased with the increasing concentration of NaBr, while the dilational moduli of 17R4/CTAB mixed solutions increased firstly, passed through the maximum, and then decreased. These differences show that NaBr has great influence on the interactions between Pluronic block polyethers and CTAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Z, Xu G, Wang F, Dong S, Chen Y (2005) Demulsification by amphiphilic dendrimer copolymers. J Colloid Interface Sci 282:1–4

    Article  CAS  Google Scholar 

  2. Shiloach A, Blankschtein D (1998) Measurement and prediction of ionic/nonionic mixed micelle formation and growth. Langmuir 14:7166–7182

    Article  CAS  Google Scholar 

  3. Szymczyk K, Jańczuk B (2006) The wettability of polytetrafluoroethylene by aqueous solution of cetyltrimethylammonium bromide and Triton X-100 mixtures. J Colloid Interface Sci 303:319–325

    Article  CAS  Google Scholar 

  4. Xiao J, Zhao Z (2003) Application principle of surfactants. Chemical Industry Press, Beijing, p 422

    Google Scholar 

  5. Brandanti P, Stroeve P (2003) Adsorption and desorption of PEO–PPO–PEO triblock copolymers on a self-assembled hydrophobic surface. Macromolecules 36:9492–9501

    Article  Google Scholar 

  6. Lisi RD, Milioto S (2000) Poly(ethylene oxide)13–poly(propylene oxide)30–poly(ethylene oxide)13 electrolyte interactions in aqueous solutions at some temperatures. Langmuir 16:5579–5583

    Article  Google Scholar 

  7. Wang R, Knoll H, Rittig F, Kärger J (2001) Fluorescence probe and pulsed field gradient NMR study of aqueous solutions of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer F88. Langmuir 17:7464–7467

    Article  CAS  Google Scholar 

  8. Horvat A, Lyakhova KS, Sevink GJA, Zvelindovsky AV, Magerle R (2004) Phase behavior in thin films of cylinder-forming ABA block copolymers: mesoscale modeling. J Chem Phys 120:1117–1126

    Article  CAS  Google Scholar 

  9. Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27:4145–4159

    Article  CAS  Google Scholar 

  10. Nolan SL, Phillips RJ, Cotts PM, Dungan SR (1997) Light scattering study on the effect of polymer composition on the structural properties of PEO-PPO-PEO micelles. J Colloid Interface Sci 191:291–302

    Article  CAS  Google Scholar 

  11. Nivaggioli T, Tsao B, Alexandridis P, Hatton TA (1995) Microviscosity in pluronic and tetronic poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles. Langmuir 11:119–126

    Article  CAS  Google Scholar 

  12. Su Y, Wang J, Liu H (2002) FTIR spectroscopic investigation of effects of temperature and concentration on PEO-PPO-PEO block copolymer properties in aqueous solutions. Macromolecules 35:6426–6431

    Article  CAS  Google Scholar 

  13. Duval M, Waton G, Schosseler F (2005) Temperature-induced growth of wormlike copolymer micelles. Langmuir 21:4904–4911

    Article  CAS  Google Scholar 

  14. Zhang K, Lindman B, Coppola L (1995) Melting of block copolymer self-assemblies induced by a hydrophilic surfactant. Langmuir 11:538–542

    Article  CAS  Google Scholar 

  15. Hecht E, Hoffmann H (1994) Interaction of ABA block copolymers with ionic surfactants in aqueous solution. Langmuir 10:86–91

    Article  CAS  Google Scholar 

  16. Hecht E, Mortensen K, Gradzielski M, Hoffmann H (1995) Interaction of ABA block copolymers with ionic surfactants influence on micellization and gelation. J Phys Chem 99:4866–4874

    Article  CAS  Google Scholar 

  17. Couderc-Azouani S, Sidhu J, Thurn T, Xu R, Wyn-Jones E (2005) Binding of sodium dodecyl sulfate and hexaethylene glycol mono-n-dodecyl ether to the block copolymer L64: electromotive force, microcalorimetry, surface tension, and small angle neutron scattering investigations mixed micelles and polymer/micellar surfactant complexes. Langmuir 21:10197–10208

    Article  CAS  Google Scholar 

  18. Vieira JB, Thomas RK, Li ZX, Penfold J (2005) Unusual micelle and surface adsorption behavior in mixtures of surfactants with an ethylene oxide-propylene oxide triblock copolymer. Langmuir 21:4441–4451

    Article  CAS  Google Scholar 

  19. Munoz MG, Monroy F, Hernandez P (2003) Anomalous damping of the capillary waves at the air-water interface of a soluble triblock copolymer. Langmuir 19:2147–2154

    Article  CAS  Google Scholar 

  20. Kim C, Yu H (2003) Surface rheology of monolayers of triblock copolymers of PEO and PPO: surface light scattering studies at the air/water interface. Langmuir 19:4460–4464

    Article  CAS  Google Scholar 

  21. Noskov B, Lin S, Loglio G, Rubio R, Miller R (2006) Dilational viscoelasticity of PEO-PPO-PEO triblock copolymer films at the air-water interface in the range of high surface pressures. Langmuir 22:2647–2652

    Article  CAS  Google Scholar 

  22. Wu D, Feng Y, Xu G, Chen Y, Cao X, Li Y (2007) Dilational rheological properties of gemini surfactant 1,2-ethane bis(dimethyl dodecyl ammonium bromide) at air/water interface. Colloid Surf A 299:117–123

    Article  CAS  Google Scholar 

  23. Xin X, Xu G, Wang Y, Mao H, Zhang Z (2008) Interaction between star-like block copolymer and sodium oleate in aqueous solutions. Eur Polym J 44:3246–3255

    Article  CAS  Google Scholar 

  24. Xin X, Xu G, Wu D, Gong H, Zhang H, Wang Y (2008) Effects of sodium halide on the interaction between polyvinylpyrrolidone and sodium oleate: surface tension and oscillating barrier studies. Colloid Surf A 322:54–60

    Article  CAS  Google Scholar 

  25. Li Y, Xu G, Xin X, Cao X, Wu D (2008) Dilational surface viscoelasticity of hydroxypropyl methyl cellulose and CnTAB at air–water surface. Carbohydr Polym 72:211–221

    Article  CAS  Google Scholar 

  26. Latnikova AV, Lin SY, Loglio G, Miller R, Noskov BA (2008) Impact of surfactant additions on dynamic properties of β-casein adsorption layers. J Phys Chem C 112:6126–6131

    Article  CAS  Google Scholar 

  27. Gong H, Xu G, Liu T, Xu L, Zhai X, Zhang J, Lv X (2012) Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation. Langmuir 28:13590–13600

    Article  CAS  Google Scholar 

  28. Blomqvist BR, Wa¨rnheim T, Claesson PM (2005) Surface rheology of PEO-PPO-PEO triblock copolymers at the air-water interface: comparison of spread and adsorbed layers. Langmuir 21:6373–6384

    Article  CAS  Google Scholar 

  29. Liu T, Xu G, Gong H, Pang J, He F (2011) Effect of alcohols on aggregation behaviors of branched block polyether Tetronic 1107 at an air/liquid surface. Langmuir 27:9253–9260

    Article  CAS  Google Scholar 

  30. Xin X, Xu G, Zhang Z, Chen Y, Wang F (2007) Aggregation behavior of star-like PEO–PPO–PEO block copolymer in aqueous solution. Eur Polym J 43:3106–3111

    Article  CAS  Google Scholar 

  31. Gong H, Xu G, Ding H, Shi X, Tan Y (2009) Aggregation behavior of block polyethers with branched structure at air/water surface. Eur Polym J 45:2540–2548

    Article  CAS  Google Scholar 

  32. Gong H, Xu G, Shi X, Liu T, Sun Z (2010) Comparison of aggregation behaviors between branched and linear block polyethers: MesoDyn simulation study. Colloid Polym Sci 288:1581–1592

    Article  CAS  Google Scholar 

  33. Gong H, Xu G, Liu T, Pang J, Dou W, Xin X (2011) Synthesis of block polyethers with various structures and their application in dispersing single-walled carbon nanotubes. Colloid Polym Sci 289:933–942

    Article  CAS  Google Scholar 

  34. Gong H, Xu L, Xu G, Dong M, Li Y (2014) Effect of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO on the rheological and EOR properties of polymer solutions. Ind Eng Chem Res 53:4544–4553

    Article  CAS  Google Scholar 

  35. Liu T, Xu G, Zhang J, Zhang H, Pang J (2013) Dispersion of carbon nanotubes by the branched block copolymer Tetronic 1107 in an alcohol–water solution. Colloid Polym Sci 291:691–698

    Article  CAS  Google Scholar 

  36. Xin X, Xu G, Zhao T, Zhu Y, Shi X, Gong H, Zhang Z (2008) Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer. J Phys Chem C 112:16377–16384

    Article  CAS  Google Scholar 

  37. Lucassen J, Giles D (1975) Dynamic surface properties of nonionic surfactant solutions. J Chem Soc Faraday Trans 71:217–232

    Article  CAS  Google Scholar 

  38. Benjamins J, Cagna A, Lucassen-Reynders EH (1996) Viscoelastic properties of triacylglycerol/water interfaces covered by proteins. Colloid Surf A 114:245–254

    Article  CAS  Google Scholar 

  39. Fromyr T, Hansen FK, Kotzev A, Laschewsky A (2001) Adsorption and surface elastic properties of corresponding fluorinated and nonfluorinated cationic polymer films measured by drop shape analysis. Langmuir 17:5256–5264

    Article  CAS  Google Scholar 

  40. Sun T, Zhang L, Wang Y, Zhao S, Peng B, Li M, Yu J (2002) Influence of demulsifiers of different structures on interfacial dilational properties of an oil–water interface containing surface-active fractions from crude oil. J Coll Interf Sci 255:241–247

    Article  CAS  Google Scholar 

  41. Wang Y, Zhang L, Sun T, Zhao S, Yu J (2004) A study of interfacial dilational properties of two different structure demulsifiers at oil–water interfaces. J Colloid Interface Sci 270:163–170

    Article  CAS  Google Scholar 

  42. Modaressia A, Sifaouib H, Grzesiakc B, Solimandod R, Domanskac U, Rogalski M (2007) CTAB aggregation in aqueous solutions of ammonium based ionic liquids; conductimetric studies. Colloid Surf A 296:104–108

    Article  Google Scholar 

  43. Pang J, Wang Y, Xu G, Han T, Lv X, Zhang J (2011) Molecular dynamics simulations of SDS, DTAB, and C12E8 monolayers adsorbed at the air/water surface in the presence of DSEP. J Phys Chem B 115:2518–2526

    Article  CAS  Google Scholar 

  44. Couderc S, Li Y, Bloor DM, Holzwarth JF, Wyn-Jones E (2001) Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether (C12EO6) and the surface active nonionic ABA block copolymer pluronic F127 (EO97PO69EO97) formation of mixed micelles studied using isothermal titration calorimetry and differential scanning calorimetry. Langmuir 17:4818–4824

    Article  CAS  Google Scholar 

  45. Zhao G, Zhu B (2003) Principles of surfactant action. China light industry press, Beijing, pp 264–267

    Google Scholar 

  46. Ma J, Guo C, Tang Y, Wang J, Zheng L, Liang X, Chen S, Liu H (2007) Salt-induced micellization of a triblock copolymer in aqueous solution: a 1H nuclear magnetic resonance spectroscopy study. Langmuir 23:3075–3083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (20873077, 51204197) and the Fundamental Research Funds for the Central Universities (15CX06033A).

Funding

The present study was funded by the National Natural Science Foundation of China (Nos. 20873077 and 51204197) and the Fundamental Research Funds for the Central Universities (project no. 15CX06033A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiying Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Xu, L., Zhu, T. et al. Interactions between pluronic block polyether and CTAB at air/water interface: interfacial dilational rheology study. Colloid Polym Sci 294, 1577–1584 (2016). https://doi.org/10.1007/s00396-016-3919-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3919-2

Keywords

Navigation