Skip to main content
Log in

Heat/durability resistance of the superhydrophobic PPS-based coatings prepared by spraying non-fluorinated polymer solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The purpose of this work was to prepare a non-fluorinated superhydrophobic composite coating with heat/durability resistance and excellent adhesion properties. This procedure was based on organic–inorganic molecular hybrid Zinc oxide (ZnO)/Carbon Nanotubes (CNTs)-Poly(dimethylsiloxane) (PDMS) and Stearic acid compound. The coating produced was characterized in terms of their superhydrophobic properties and morphology. In optimized conditions, the contact angle (CA) for water and oil deposited on the coating were as high as 172, and 154°, respectively. In addition, the composite coating could maintain superhydrophobic even soaked in liquid with pH from 1 to 14. The resulting superhydrophobic composite coating showed good thermal stability, which could maintain hydrophobic even under a harsh environment with the high temperature over 150 °C. The contact angle of the prepared coating could still keep superhydrophobic even after being exposed in air about 90 days, showing a good performance in durability. The enhancement in these preliminary results will guide the design and fabrication of the non-fluorinated commercial superhydrophobic coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ge J, Si Y, Fu F, Wang J, Yang J, Cui L, Ding B, Yu J, Sun G (2013) Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Adv 3(7):2248–2255

    Article  CAS  Google Scholar 

  2. Rao AV, Gurav AB, Latthe SS, Vhatkar RS, Imai H, Kappenstein C, Wagh P, Gupta SC (2010) Water-repellent-porous silica films by sol–gel dip coating method. J Colloid Interface Sci 352(1):30–35

    Article  CAS  Google Scholar 

  3. Xiong D, Liu G, Duncan ES (2013) Robust amphiphobic coatings from bi-functional silica particles on flat substrates. Polymer 54(12):3008–3016

    Article  CAS  Google Scholar 

  4. Wang H, Sun F, Wang C, Zhu Y, Wang H (2015) ) A simple drop-casting approach to fabricate the super-hydrophobic PMMA-PSF-CNFs composite coating with heat-, wear-and corrosion-resistant properties. Colloid Polym Sci:1–7

  5. G-Y W, Wang S-S, J-C W, Hsu M-Y, Chen H (2011) Preparation of highly adhesive and superhydrophobic epoxy-based thin film by sol–gel process. J Adhes Sci Technol 25(10):1095–1106

    Article  Google Scholar 

  6. Motlagh NV, Birjandi FC, Sargolzaei J, Shahtahmassebi N (2013) Durable, superhydrophobic, superoleophobic, and corrosion resistant coating on the stainless steel surface using a scalable method. Appl Surf Sci 283:636–647

    Article  Google Scholar 

  7. Hozumi A, Cheng DF, Yagihashi M (2011) Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis. J Colloid Interface Sci 353(2):582–587

    Article  CAS  Google Scholar 

  8. Song J-1, W-j X, Liu X, Lu Y, Sun J (2012) Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability. Applied Physics A 108(3):559–568

    Article  CAS  Google Scholar 

  9. Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318(5856):1618–1622

    Article  CAS  Google Scholar 

  10. Ganesh VA, Dinachali SS, Nair AS, Ramakrishna S (2013) Robust superamphiphobic film from electrospun TiO2 nanostructures. ACS Appl Mater Interfaces 5(5):1527–1532

    Article  CAS  Google Scholar 

  11. Cui Z, Ding J, Scoles L, Wang Q, Chen Q (2013) Superhydrophobic surfaces fabricated by spray-coating micelle solutions of comb copolymers. Colloid Polym Sci 291(6):1409–1418

    Article  CAS  Google Scholar 

  12. Dong F, Ha C-S (2012) Multifunctional materials based on polysilsesquioxanes. Macromol Res 20(4):335–343

    Article  CAS  Google Scholar 

  13. Xue C-H, Jia S-T, Zhang J, Tian L-Q (2009) Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films 517(16):4593–4598

    Article  CAS  Google Scholar 

  14. Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24(18):2409–2412

    Article  CAS  Google Scholar 

  15. Andrews H, Eccles E, Schofield W, Badyal J (2011) Three-dimensional hierarchical structures for fog harvesting. Langmuir 27(7):3798–3802

    Article  CAS  Google Scholar 

  16. Chhatre SS, Choi W, Tuteja A, Park K-C, Mabry JM, McKinley GH, Cohen RE (2009) Scale dependence of omniphobic mesh surfaces. Langmuir 26(6):4027–4035

    Article  Google Scholar 

  17. Mazrouei-Sebdani Z, Khoddami A (2011) Alkaline hydrolysis: a facile method to manufacture superhydrophobic polyester fabric by fluorocarbon coating. Prog Org Coat 72(4):638–646

    Article  CAS  Google Scholar 

  18. Kang SM, Kim SM, Kim HN, Kwak MK, Tahk DH, Suh KY (2012) Robust superomniphobic surfaces with mushroom-like micropillar arrays. Soft Matter 8(33):8563–8568

    Article  CAS  Google Scholar 

  19. Grigoryev A, Tokarev I, Kornev KG, Luzinov I, Minko S (2012) Superomniphobic magnetic microtextures with remote wetting control. J Am Chem Soc 134(31):12916–12919

    Article  CAS  Google Scholar 

  20. Pan S, Kota AK, Mabry JM, Tuteja A (2012) Superomniphobic surfaces for effective chemical shielding. J Am Chem Soc 135(2):578–581

    Article  Google Scholar 

  21. Zhou S, Ding X, Wu L (2013) Fabrication of ambient-curable superhydrophobic fluoropolysiloxane/TiO 2 nanocomposite coatings with good mechanical properties and durability. Prog Org Coat 76(4):563–570

    Article  CAS  Google Scholar 

  22. Lee J-P, Choi S, Park S (2010) Extremely superhydrophobic surfaces with micro-and nanostructures fabricated by copper catalytic etching. Langmuir 27(2):809–814

    Article  Google Scholar 

  23. Jafari R, Menini R, Farzaneh M (2010) Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl Surf Sci 257(5):1540–1543

    Article  CAS  Google Scholar 

  24. Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078

    Article  CAS  Google Scholar 

  25. Ge B, Zhang Z, Zhu X, Ren G, Men X, Zhou X (2013) A magnetically superhydrophobic bulk material for oil removal. Colloids Surf A Physicochem Eng Asp 429:129–133

    Article  CAS  Google Scholar 

  26. Gnanappa AK, Papageorgiou DP, Gogolides E, Tserepi A, Papathanasiou AG, Boudouvis AG (2012) Hierarchical, plasma nanotextured, robust superamphiphobic polymeric surfaces structurally stabilized through a wetting–drying cycle. Plasma Process Polym 9(3):304–315

    Article  CAS  Google Scholar 

  27. Zhou H, Wang H, Niu H, Gestos A, Lin T (2013) Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater 23(13):1664–1670

    Article  CAS  Google Scholar 

  28. Tsai H-J, Lee Y-L (2007) Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir 23(25):12687–12692

    Article  CAS  Google Scholar 

  29. Chakradhar R, Kumar VD, Rao J, Basu BJ (2011) Fabrication of superhydrophobic surfaces based on ZnO–PDMS nanocomposite coatings and study of its wetting behavior. Appl Surf Sci 257(20):8569–8575

    Article  CAS  Google Scholar 

  30. Wang H, Zhao J, Zhu Y, Meng Y, Zhu Y (2013) The fabrication, nano/micro-structure, heat-and wear-resistance of the superhydrophobic PPS/PTFE composite coatings. J Colloid Interface Sci 402:253–258

    Article  CAS  Google Scholar 

  31. Ghosh N, Bajoria A, Vaidya AA (2009) Surface chemical modification of poly (dimethylsiloxane)-based biomimetic materials: oil-repellent surfaces. ACS Appl Mater Interfaces 1(11):2636–2644

    Article  CAS  Google Scholar 

  32. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24(8):4114–4119

    Article  CAS  Google Scholar 

  33. Chang Y, Liu X, Yang H, Zhang L, Cui Z, Niu M, Liu H, Chen J (2016) Nonsolvent-assisted fabrication of multi-scaled polylactide as superhydrophobic surfaces. Soft Matter 12(10):2766–2772

    Article  CAS  Google Scholar 

  34. Almutairi Z, Ren CL, Simon L (2012) ) Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications. Colloids Surf A Physicochem Eng Asp 415:406–412

    Article  CAS  Google Scholar 

  35. dos Santos MP, Magosso HA, Yoshida IV, Gushikem Y (2012) Poly (dimethylsiloxane) (PDMS)-Schiff base, a new polymeric network and its adsorbent capability for copper ions from ethanol. Colloids Surf A Physicochem Eng Asp 398:1–8

    Article  CAS  Google Scholar 

  36. Wang H, Liu Z, Wang E, Zhang X, Yuan R, Wu S, Zhu Y (2015) Facile preparation of superamphiphobic epoxy resin/modified poly (vinylidene fluoride)/fluorinated ethylene propylene composite coating with corrosion/wear-resistance. Appl Surf Sci 357:229–235

    Article  CAS  Google Scholar 

  37. Wang H, Gao D, Meng Y, Wang H, Wang E, Zhu Y (2015) Corrosion-resistance, robust and wear-durable highly amphiphobic polymer based composite coating via a simple spraying approach. Prog Org Coat 82:74–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research is financially supported by the National Young Top Talents Plan of China (2013042), National Science Foundation of China (51175066), FANEDD (201164), New Century Excellent Talents in University (NCET-12-0704), the Science Foundation for Distinguished Young Scholars of Heilongjiang Province (JC201403), and the Northeast Petroleum University Innovation Foundation For Postgraduate (YJSCX2016-016NEPU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanji Zhu.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, C., Gao, D. et al. Heat/durability resistance of the superhydrophobic PPS-based coatings prepared by spraying non-fluorinated polymer solution. Colloid Polym Sci 294, 1519–1527 (2016). https://doi.org/10.1007/s00396-016-3914-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3914-7

Keywords

Navigation