Skip to main content
Log in

Preparation and thermal stability of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/poly(acrylonitrile-co-butadiene) nanocomposites—application to the separation of oil and water

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica nanocomposites-encapsulated poly(acrylonitrile-co-butadiene) (NBR) [RF-(VM-SiO2) n -RF/NBR] were prepared by the sol-gel reactions of the corresponding oligomer [RF-(VM) n -RF] in the presence of NBR under alkaline conditions. Interestingly, it was demonstrated that these obtained fluorinated nanocomposites can afford no weight loss corresponding to the contents of NBR in the composites even after calcination at 800 °C. On the other hand, the nanocomposites, which were prepared under the cross-linking conditions at 150 °C for 30 min by using NBR containing zinc oxide and sulfur (S8) as the cure activator and the cross-linker, respectively, were found to exhibit a clear weight loss corresponding to the contents of the NBR after calcination at 800 °C. The fluoroalkyl end-capped oligomeric silica nanocomposites-encapsulated the cross-linked NBR were applied to the surface modification of glass to supply the superoleophilic/superhydrophobic characteristic on the surface. The nanocomposites possessing such superoleophilic/superhydrophobic characteristic were applied to the packing material for the column chromatography to separate not only the mixture of oil and water but also the W/O emulsion. In contrast, the nanocomposites, which were prepared under no cross-linking conditions, were not applicable to the packing materials for the separation of these mixtures due to the oleophilic characteristic of the encapsulated NBR in the nanocomposite cores.

Application of RF-(VM-SiO2) n -RF/NBRzn-s nanocomposites to the separation of oil and waterᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sadhu S, Bhowmick AK (2004) J Polym Sci Part B: Polym Phys 42:1573–1585

    Article  CAS  Google Scholar 

  2. Frounchi M, Mehrabzadeh M, Parvary M (2000) Polym Int 49:163–169

    Article  CAS  Google Scholar 

  3. Choi S-S, Ha S-H (2010) J Ind Eng Chem 16:238–242

    Article  CAS  Google Scholar 

  4. Kim J-T, Oh T-S, Lee D-H (2003) Polym Int 52:1058–1063

    Article  CAS  Google Scholar 

  5. Kim J. T, Oh T-S, vLee D-H (2003) Polym Int 52:1203–1208

  6. Kim JT, Oh T-S, Lee D-H (2004) Polym Int 53:406–411

    Article  CAS  Google Scholar 

  7. Du W, Zou H, Tian M, Zhang L, Wang W (2012) Polym Adv Technol 23:1029–1035

    Article  CAS  Google Scholar 

  8. Zhu S-H, Chan C-M, Wong SC, Mai Y-W (1999) Polym Eng Sci 39:1998–2006

    Article  CAS  Google Scholar 

  9. Suzuki N, Ito M, Ono S (2005) J Appl Polym Sci 95:74–81

    Article  CAS  Google Scholar 

  10. Yu P, He H, Jiang C, Jia Y, Wang D, Yao X, Jia D, Luo YJ (2016) Appl Polym Sci 1–10. doi:10.1002/app.42922

  11. Vargese H, Bhagawan SS, Thomas S (1995) Eur Polym J 31:957–967

    Article  Google Scholar 

  12. Bandyopadhyay GG, Bhagawan SS, Ninan KN, Thomas S (1997) Rubber Chem Technol 70:650–662

    Article  CAS  Google Scholar 

  13. Pandey JK, Reddy KR, Kumar AP, Singh RO (2005) Polym Degrad Stab 88:234–250

    Article  CAS  Google Scholar 

  14. Koshy AT, Kuriakose B, Thomas S (1992) Polym Degrad Stab 36:137–147

    Article  CAS  Google Scholar 

  15. Lopes D, Ferreria MJ, Russo R, Dias JM (2015) J Clean Prod 92:230–236

    Article  CAS  Google Scholar 

  16. Jansen P, oares BG (2001) J Appl Polym Sci 79:193–202

  17. Ge X, Zhang Y, Deng F, Cho UR Polym Compos doi:10.1002/pc.23817

  18. Ge X, Li M-C, Li XX, Cho UR (2015) Appl Clay Sci 118:265–275

    Article  CAS  Google Scholar 

  19. Thomas PC, Jose ET, George G, Thomas S, Joseph K (2012) Polym Compos 33:2236–2244

    Article  CAS  Google Scholar 

  20. H. Takahashi and H. Sawada (2006) United States Patent, US 7,144,962 B2

  21. Sawada H, Matsuki Y, Goto Y, Kodama S, Sugiya M, Nishiyama Y (2010) Bull Chem Soc Jpn 83:75–81

    Article  CAS  Google Scholar 

  22. Sawada H (2012) Polym Chem 3:46–65

    Article  CAS  Google Scholar 

  23. Sawada H, Nakayama M (1991) J Chem Soc Chem Commun 677–678

  24. Akiba M, Hashim AS (1997) Prog Polym Sci 22:475–521

    Article  CAS  Google Scholar 

  25. Rahaman MSA, Ismail AF, Mustafa A (2007) Polym Degrad Stab 92:1421–1432

    Article  CAS  Google Scholar 

  26. Xiao S, Wang B, Zhao C, Xu L, Chen B (2013) J Appl Polym Sci 127:2332–2338

    Article  CAS  Google Scholar 

  27. Sivy GT, Gordon B, Coleman MM (1983) Carbon 21:573–578

    Article  CAS  Google Scholar 

  28. Xiao S, Cao W, Wang B, Xu L, Chen B (2013) J Appl Polym Sci 127:3198–3203

    Article  CAS  Google Scholar 

  29. Sawada H, Kabutomori M, Ratcha A, Kongparakul S, Nishida M (2016) Colloid Polym Sci. 294:1173–1186

  30. Oikawa Y, Saito T, Yamada S, Sugiya M, Sawada H (2015) ACS Appl Mater Interfaces 7:13782–13793

    Article  CAS  Google Scholar 

  31. Saito T, Tsushima Y, Sawada H (2015) Colloid Poym Sci 293:65–73

    Article  CAS  Google Scholar 

  32. Li J, Wan H, Ye Y, Zhou H, Chen J (2012) Appl Surf Sci 261:470–472

    Article  CAS  Google Scholar 

  33. Zhang M, Wang C, Wang S, Shi Y, Li J (2012) Appl Surf Sci 261:764–769

    Article  CAS  Google Scholar 

  34. Zhang M, Wang C, Wang S, Shi Y, Li J (2013) Carbohydr Polym 97:59–64

    Article  CAS  Google Scholar 

  35. Arbatan T, Zhang L, Fang X-Y, Shen W (2012) Chem Eng J 210:74–79

    Article  CAS  Google Scholar 

  36. Si Y, Guo Z (2015) Chem Lett 44:874–883

    Article  CAS  Google Scholar 

  37. Liu K, Tian Y, Jiang L (2013) Prog Mater Sci 58:503–564

    Article  CAS  Google Scholar 

  38. Darmanin T, Guittard F (2014) Prog Polym Sci 39:656–682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Sawada.

Ethics declarations

Funding

This work was partially supported by a Grant-in-Aid for Scientific Research 16 K05891 from the Ministry of Education, Science, Sports, and Culture, Japan.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratcha, A., Saito, T., Takahashi, R. et al. Preparation and thermal stability of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/poly(acrylonitrile-co-butadiene) nanocomposites—application to the separation of oil and water. Colloid Polym Sci 294, 1529–1539 (2016). https://doi.org/10.1007/s00396-016-3909-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3909-4

Keywords

Navigation