Skip to main content

Advertisement

Log in

Determination of total aflatoxin using cysteamine-capped CdS quantum dots as a fluorescence probe

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Aflatoxins form a class of potent carcinogens that contaminate a wide range of food products and can be fatal to humans and livestock. We have designed cysteamine-capped CdS quantum dots (QDs) to serve as aflatoxin photodetectors for use in agricultural industries. Water-soluble CdS QDs are synthesized through growth in a poly(vinyl alcohol) matrix using a chemical precipitation method. The prepared QDs are then characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and transmission electron microscopy (TEM) analyses. The obtained results revealed that these CdS QDs have a 1- to 2-nm crystalline size, hexagonal wurtzite structure, and spherical morphology with a diameter less than 10 nm. Photoluminescence spectroscopy (PL) is performed to study the CdS QDs interactions with a standard solution of aflatoxins (B1, B2, G1, and G2 in a ratio of 5:1:5:1) in order to determine their effectiveness as aflatoxin detectors. A green emission peak is observed at 508 nm, with an intensity enhancement positively correlated with total aflatoxin concentration. The lower limit of detection for total aflatoxin concentration is found to be 0.05 ppb, well below international contamination allowances for food products. PL variations with aflatoxin concentration are best described by a Langmuir-type equation in the concentration range of this study (2.4–48 ppb).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chiewchan N, Mujumdar AS, Devahastin S (2015) Application of drying technology to control aflatoxins in foods and feeds: a review. Dry Technol 33(14):1700–7

    Article  CAS  Google Scholar 

  2. Colak H, Hampikyan H, Ulusoy B, Ergun O (2006) Comparison of a competitive ELISA with an HPLC method for the determination of aflatoxin M1 in Turkish white, Kasar and Tulum cheeses. Eur Food Res Technol 223(6):719–23

    Article  CAS  Google Scholar 

  3. Trucksess MW, Stack ME, Nesheim S, Albert RH, Romer TR (1993) Multifunctional column coupled with liquid chromatography for determination of aflatoxins B1, B2, G1, and G2 in corn, almonds, Brazil nuts, peanuts, and pistachio nuts: collaborative study. J AOAC Int 77(6):1512–21

    Google Scholar 

  4. Vandercammen G. New EU aflatoxin levels and sampling plan. USDA Foreign Agricultural Service. Global Agricultural Information Network: 2010 Contract No.: E50018.

  5. Van Egmond H, Jonker M. Worldwide regulations for mycotoxins in food and feed in 2003: Food and Agriculture Organization of the United Nations; 2004

  6. Zekavati R, Safi S, Hashemi SJ, Rahmani-Cherati T, Tabatabaei M, Mohsenifar A et al (2013) Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchim Acta 180(13–14):1217–23

    Article  CAS  Google Scholar 

  7. Sameie H, Salimi R, Alvani AS, Sarabi A, Moztarzadeh F, Tahriri M (2010) Evaluation of sol–gel derived Eu 2+ activated SrMgAl 2SiO 7 as a novel nanostructure luminescent pigment. Phys B Condens Matter 405(23):4796–800

    Article  CAS  Google Scholar 

  8. Bodaghi M, Mirhabibi A, Tahriri M, Zolfonoon H, Karimi M (2009) Mechanochemical assisted synthesis and powder characteristics of nanostructure ceramic of α-Al2O3 at room temperature. Mater Sci Eng B 162(3):155–61

    Article  CAS  Google Scholar 

  9. Bodaghi M, Zolfonoon H, Tahriri M, Karimi M (2009) Synthesis and characterization of nanocrystalline α-Al2O3 using Al and Fe2O3 (hematite) through mechanical alloying. Solid State Sci 11(2):496–500

    Article  CAS  Google Scholar 

  10. Tahriri M, Moztarzadeh F (2014) Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications. Appl Biochem Biotechnol 172(5):2465–79

    Article  CAS  Google Scholar 

  11. Khosroshahi ME, Ghazanfari L, Tahriri M (2011) Characterisation of binary (Fe3O4/SiO2) biocompatible nanocomposites as magnetic fluid. J Exp Nanosci 6(6):580–95

    Article  CAS  Google Scholar 

  12. Salimi R, Sameie H, Alvani AS, Sarabi A, Mohammadloo HE, Nargesian F et al (2013) SrZn 2 Si 2 O 7: Eu 2+, Mn 2+: a single-phased emission tunable nanophosphor suitable for white light emitting diodes. JOSA B 30(6):1747–54

    Article  CAS  Google Scholar 

  13. Salimi R, Sameie H, Alvani AS, Sarabi A, Moztarzadeh F, Mohammadloo HE et al (2012) Sol–gel synthesis, structural and optical characteristics of Sr1− x Zn2Si2yO7+ δ: xEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes. J Mater Sci 47(6):2658–64

    Article  CAS  Google Scholar 

  14. Salimi R, Sameie H, Sabbagh Alvani A, Sarabi A, Moztarzadeh F, Tahriri M (2011) Sol–gel synthesis, characterization and luminescence properties of SrMgAl2SiO7: Eu2+ as a novel nanocrystalline phosphor. Luminescence 26(6):449–55

    Article  CAS  Google Scholar 

  15. Shafia E, Aghaei A, Davarpanah A, Bodaghi M, Tahriri M, Alavi S (2011) Synthesis and characterization of SrAl2O4: Eu2+, Dy3+ nanocrystalline phosphorescent pigments. Transactions of the Indian Ceramic Society 70(2):71–7

    Article  CAS  Google Scholar 

  16. Bodaghi M, Mirhabibi A, Zolfonoon H, Salehie M, Tahriri M (2008) Preparation and characterisation of α-Al2O3 powder from γ-Al2O3 powder using mechanical milling technique. Mater Res Innov 12(4):157–61

    Article  CAS  Google Scholar 

  17. Shafia E, Aghaei A, Bodaghi M, Tahriri M (2011) Combusion synthesis, structural and photo-physical characteristics of Eu2+ and Dy3+ co-doped SrAl2O4 phosphor nanopowders. J Mater Sci Mater Electron 22(8):1136–42

    Article  CAS  Google Scholar 

  18. Mohagheghpour E, Moztarzadeh F, Rabiee M, Tahriri M, Ashuri M, Sameie H et al (2012) Micro-emulsion synthesis, surface modification, and photophysical properties of nanocrystals for biomolecular recognition. IEEE Transac NanoBioscience 11(4):317–23

    Article  Google Scholar 

  19. Eslami H, Solati-Hashjin M, Tahriri M (2008) Synthesis and characterization of nanocrystalline fluorinated hydroxyapatite powder by modified wet-chemical process. J Ceram Process Res 9:224–9

    Google Scholar 

  20. Mozafari M, Moztarzadeh F, Tahriri M (2011) Green synthesis and characterisation of spherical PbS luminescent micro-and nanoparticles via wet chemical technique. Adv Appl Ceram 110(1):30–4

    Article  CAS  Google Scholar 

  21. Karimi M, Rabiee M, Moztarzadeh F, Bodaghi M, Tahriri M (2009) Ammonia-free method for synthesis of CdS nanocrystalline thin films through chemical bath deposition technique. Solid State Commun 149(41):1765–8

    Article  CAS  Google Scholar 

  22. Tahriri M, Solati-Hashjin M, Eslami H (2008) Synthesis and characterization of hydroxyapatite nanocrystals via chemical precipitation technique. Iranian Journal of Pharmaceutical Sciences 4(2):127–34

    Google Scholar 

  23. Shafia E, Bodaghi M, Tahriri M (2010) The influence of some processing conditions on host crystal structure and phosphorescence properties of SrAl 2 O 4: Eu 2+, Dy 3+ nanoparticle pigments synthesized by combustion technique. Curr Appl Phys 10(2):596–600

    Article  Google Scholar 

  24. Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Nezafati N, Moztarzadeh Z et al (2010) Development of 3 d bioactive nanocomposite scaffolds made from gelatin and nano bioactive glass for biomedical applications. Adv Compos Lett 19(2):91–6

    Google Scholar 

  25. Bodaghi M, Mirhabibi A, Zolfonun H, Tahriri M, Karimi M (2008) Investigation of phase transition of γ-alumina to α-alumina via mechanical milling method. Phase Transit 81(6):571–80

    Article  CAS  Google Scholar 

  26. Kazemi F, Saberi A, Malek-Ahmadi S, Sohrabi S, Rezaie H, Tahriri M (2011) Novel method for synthesis of metastable tetragonal zirconia nanopowders at low temperatures. Ceramics-Silikáty 55(1):26–30

    CAS  Google Scholar 

  27. Zou L, Fang Z, Gu Z, Zhong X (2009) Aqueous phase synthesis of biostabilizer capped CdS nanocrystals with bright emission. J Lumin 129(5):536–40

    Article  CAS  Google Scholar 

  28. Mohagheghpour E, Rabiee M, Moztarzadeh F, Tahriri M, Jafarbeglou M, Bizari D et al (2009) Controllable synthesis, characterization and optical properties of ZnS: Mn nanoparticles as a novel biosensor. Mater Sci Eng C 29(6):1842–8

    Article  CAS  Google Scholar 

  29. Abdolrahim M, Rabiee M, Alhosseini SN, Tahriri M, Yazdanpanah S, Tayebi L (2015) Development of optical biosensor technologies for cardiac troponin recognition. Anal Biochem 485:1–10

    Article  CAS  Google Scholar 

  30. Funkcionaliziranih MKS (2013) The wet-chemical synthesis of functionalized Zn1–xOMnx quantum dots utilizable in optical biosensors. Materiali in tehnologije 47(2):235–7

    Google Scholar 

  31. Mohagheghpour E, Salimi R, Sameie H, Moztarzadeh F, Roohnikan M, Farsi MAM, et al., editors. A new optical bio-sensor: Wet-chemical synthesis and surface treatment of nanocrystalline Zn 1-x S: Mn + 2 x. Optical Sensors; 2011: Optical Society of America.

  32. Mahmoud WE, Al-Amri AM, Yaghmour S (2012) Low temperature synthesis of CdSe capped 2-mercaptoethanol quantum dots. Opt Mater 34(7):1082–6

    Article  CAS  Google Scholar 

  33. Frecker T, Bailey D, Arzeta-Ferrer X, McBride J, Rosenthal SJ (2016) Review—quantum dots and their application in lighting, displays, and biology. ECS J Solid State Sci Technol 5(1):R3019–R31

    Article  CAS  Google Scholar 

  34. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41(10):4067–85

    Article  CAS  Google Scholar 

  35. Yang W-h, W-w L, H-j D, Sun K (2008) Hydrothermal synthesis for high-quality CdTe quantum dots capped by cysteamine. Mater Lett 62(17):2564–6

    Article  CAS  Google Scholar 

  36. Pei J, Zhu H, Wang X, Zhang H, Yang X (2012) Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection. Anal Chim Acta 757:63–8

    Article  CAS  Google Scholar 

  37. Taşcıoğlu S, Taş D (2007) Surfactant effect on determination of Cu 2+ and Cd 2+ ions by ion-selective electrodes providing evidence for the discrepancy between the point of zero charge and the isoelectric point of CdS. Colloids Surf A Physicochem Eng Asp 302(1):349–53

    Google Scholar 

  38. Ye M, Zhang Y, Li H, Zhang Y, Tan P, Tang H et al (2009) A novel method for the detection of point mutation in DNA using single-base-coded CdS nanoprobes. Biosens Bioelectron 24(8):2339–45

    Article  CAS  Google Scholar 

  39. Fernandez J, de Souza-Parise M, Morais P (2007) Optical investigation of the red band emission of CdS nanoparticles. Surf Sci 601(18):3805–8

    Article  CAS  Google Scholar 

  40. Beloglazova N, Goryacheva O, Speranskaya E, Aubert T, Shmelin P, Kurbangaleev V et al (2015) Silica-coated liposomes loaded with quantum dots as labels for multiplex fluorescent immunoassay. Talanta 134:120–5

    Article  CAS  Google Scholar 

  41. Beloglazova N, Speranskaya E, Wu A, Wang Z, Sanders M, Goftman V et al (2014) Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosens Bioelectron 62:59–65

    Article  CAS  Google Scholar 

  42. Rai M, Jogee PS, Ingle AP. Emerging nanotechnology for detection of mycotoxins in food and feed. International Journal of Food Sciences and Nutrition. 2015(ahead-of-print):1–8.

  43. Beloglazova N, Shmelin P, Goryacheva IY, De Saeger S (2013) Liposomes loaded with quantum dots for ultrasensitive on-site determination of aflatoxin M1 in milk products. Anal Bioanal Chem 405(24):7795–802

    Article  CAS  Google Scholar 

  44. Ren M, Xu H, Huang X, Kuang M, Xiong Y, Xu H et al (2014) Immunochromatographic assay for ultrasensitive detection of aflatoxin B1 in maize by highly luminescent quantum dot beads. ACS Appl Mater Interfaces 6(16):14215–22

    Article  CAS  Google Scholar 

  45. Xu W, Xiong Y, Lai W, Xu Y, Li C, Xie M (2014) A homogeneous immunosensor for AFB 1 detection based on FRET between different-sized quantum dots. Biosens Bioelectron 56:144–50

    Article  CAS  Google Scholar 

  46. Zhang Z, Li Y, Li P, Zhang Q, Zhang W, Hu X et al (2014) Monoclonal antibody-quantum dots CdTe conjugate-based fluoroimmunoassay for the determination of aflatoxin B 1 in peanuts. Food Chem 146:314–9

    Article  CAS  Google Scholar 

  47. El-Sadek MA, Nooralden AY, Babu SM, Palanisamy P (2011) Influence of different stabilizers on the optical and nonlinear optical properties of CdTe nanoparticles. Opt Commun 284(12):2900–4

    Article  Google Scholar 

  48. Ensafi AA, Kazemifard N, Rezaei B (2016) A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic (III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation. Biosens Bioelectron 77:499–504

    Article  CAS  Google Scholar 

  49. Vyhnan N, Khalavka Y (2014) Size‐dependent temperature sensitivity of photoluminescence peak position of CdTe quantum dots. Luminescence 29(7):952–4

    Article  CAS  Google Scholar 

  50. Kang T, Um K, Park J, Chang H, Lee DC, Kim C-K et al (2016) Minimizing the fluorescence quenching caused by uncontrolled aggregation of CdSe/CdS core/shell quantum dots for biosensor applications. Sensors Actuators B Chem 222:871–8

    Article  CAS  Google Scholar 

  51. Chestnoy N, Harris T, Hull R, Brus L (1986) Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J Phys Chem 90(15):3393–9

    Article  CAS  Google Scholar 

  52. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–8

    Article  CAS  Google Scholar 

  53. Barbas C, Montepríncipe U, Dams A, Majors RE. Separation of Aflatoxins by HPLC.

  54. Wang J-J, Liu B-H, Hsu Y-T, Yu F-Y (2011) Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 22(6):964–9

    Article  Google Scholar 

  55. Khan S, Lima AA, Romani EC, Aucelio RQ (2014) Determination of captopril using selective photoluminescence enhancement of 2-mercaptopropionic modified CdTe quantum dots. Mater Res Express 1(2):026202

    Article  Google Scholar 

  56. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Professor Farzaneh Vahabzadeh for the provision of laboratory facilities and for her support throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Tavakkoli Yaraki or Mohammadreza Tahriri.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Mahnoush Tayebi and Mohammad Tavakkoli Yaraki contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayebi, M., Tavakkoli Yaraki, M., Ahmadieh, M. et al. Determination of total aflatoxin using cysteamine-capped CdS quantum dots as a fluorescence probe. Colloid Polym Sci 294, 1453–1462 (2016). https://doi.org/10.1007/s00396-016-3903-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3903-x

Keywords

Navigation