Skip to main content
Log in

Electrophoresis and electric conduction in a suspension of charged soft particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A thorough analytical study of the electrophoresis and electric conduction in a suspension of charged soft particles in an arbitrary electrolyte solution is presented through the use of a unit cell model. Each soft particle is a spherical hard core of radius r 0 and constant surface charge density σ covered with a permeable porous layer of constant thickness a − r 0 and uniform fixed charge density Q. Solving the relevant electrostatic and electrokinetic differential equations, we obtain closed-form formulas for the electrophoretic mobility of the soft particles and effective electric conductivity of the suspension. These results are expressed as linear functions of σ and Q for arbitrary values of r 0/a, λa, κa, and the particle volume fraction of the suspension, where λ is the reciprocal of the Brinkman permeation length of the surface layer of each particle, and κ is the reciprocal of the Debye screening length. The effects of the surface layer characteristics and particle interactions on the electrophoretic mobility and effective conductivity are interesting, significant, and complicated. The general results for a suspension of charged soft spheres, which reduce to those of hard spheres and porous spheres in the limits r 0 = a and r 0 = 0, respectively, provide valuable information for interpreting experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dukhin SS, Derjaguin BV (1974) In: Matijevic E (ed) Surface and colloid science, vol 7. Wiley, New York

    Google Scholar 

  2. Saville DA (1979) J Colloid Interface Sci 71:477–490

    Article  CAS  Google Scholar 

  3. O’Brien RW (1981) J Colloid Interface Sci 81:234–248

    Article  Google Scholar 

  4. Ohshima H, Healy TW, White LR (1983) J Chem Soc Faraday Trans 2(79):1613–1628

    Article  Google Scholar 

  5. Hermans JJ, Fujita H (1955) Koninkl Ned Akad Wetenschap Proc Ser B 58:182–187

    Google Scholar 

  6. Liu YC, Keh HJ (1997) J Colloid Interface Sci 192:375–385

    Article  CAS  Google Scholar 

  7. Ohshima H (1994) J Colloid Interface Sci 163:474–483

    Article  CAS  Google Scholar 

  8. Liu YC, Keh HJ (1998) Langmuir 14:1560–1574

    Article  CAS  Google Scholar 

  9. Levine S, Neale GH (1974) J Colloid Interface Sci 47:520–529

    Article  Google Scholar 

  10. Zharkikh NI (1982) Shilov VN. Colloid J USSR (English translation) 43:865–870

    Google Scholar 

  11. Ohshima H (1999) J Colloid Interface Sci 212:443–448

    Article  CAS  Google Scholar 

  12. Ding JM, Keh HJ (2001) J Colloid Interface Sci 236:180–193

    Article  CAS  Google Scholar 

  13. Keh HJ, Ding JM (2002) Langmuir 18:4572–4583

    Article  CAS  Google Scholar 

  14. Carrique F, Cuquejo J, Arroyo FJ, Jimenez ML, Delgado AV (2005) Adv Colloid Interf Sci 118:43–50

    Article  CAS  Google Scholar 

  15. Cuquejo J, Jimenez ML, Delgado AV, Arroyo FJ, Carrique F (2006) J Phys Chem B 110:6179–6189

    Article  CAS  Google Scholar 

  16. Zholkovskiy EK, Masliyah JH, Shilov VN, Bhattacharjee S (2007) Adv Colloid Interface Sci 134–135:279–321

  17. Keh HJ, Liu CP (2010) J Phys Chem C 114:22044–22054

    Article  CAS  Google Scholar 

  18. Huang HY, Keh HJ (2015) Colloid Polym Sci 293:1903–1914

    Article  CAS  Google Scholar 

  19. Watillon A, Stone-Masui J (1972) J Electroanal Chem 37:143–160

    Article  CAS  Google Scholar 

  20. Zukoski CF, Saville DA (1987) J Colloid Interface Sci 115:422–436

    Article  CAS  Google Scholar 

  21. Miller NP, Berg JC (1993) J Colloid Interface Sci 159:253–254

    Article  CAS  Google Scholar 

  22. Ohshima H (2000) J Colloid Interface Sci 225:233–242

    Article  CAS  Google Scholar 

  23. Lopez-Garcia JJ, Grosse C, Horno J (2006) J Colloid Interface Sci 301:651–659

    Article  CAS  Google Scholar 

  24. Ahualli S, Jimenez ML, Carrique F, Delgado AV (2009) Langmuir 25:1986–1997

    Article  CAS  Google Scholar 

  25. Keh HJ, Hsieh TH (2008) Langmuir 23:7928–7935

    Article  Google Scholar 

  26. Chen WJ, Keh HJ (2013) J Phys Chem B 117:9757–9767

    Article  CAS  Google Scholar 

  27. Happel J (1958) AICHE J 4:197–201

    Article  CAS  Google Scholar 

  28. Kuwabara S (1959) J Phys Soc Jpn 14:527–532

    Article  Google Scholar 

  29. Liu HC (2016) Electrophoretic mobility and effective electric conductivity of concentrated suspensions of charged soft spheres. MS Thesis, National Taiwan University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan J. Keh.

Ethics declarations

Funding

This study was funded by the Ministry of Science and Technology in Taiwan (grant number MOST 103-2221-E-002-237-MY3).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H.C., Keh, H.J. Electrophoresis and electric conduction in a suspension of charged soft particles. Colloid Polym Sci 294, 1129–1141 (2016). https://doi.org/10.1007/s00396-016-3863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3863-1

Keywords

Navigation