Skip to main content
Log in

Amphiphilic single and double networks: a small-angle X-ray scattering investigation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We investigated the microphase-separated morphologies of water-swollen amphiphilic single and double polymer networks using small-angle X-ray scattering (SAXS). The networks consist of (i) a first conetwork containing hydrophobic blocks from either 2-ethylhexyl methacrylate (EHMA) or lauryl methacylate (LauMA) and hydrophilic blocks from 2-(dimethylamino)ethyl methacrylate (DMAEMA) and (ii) a second polyacrylamide (PAAm) network. The SAXS curves are modeled by spherical core-shell micelles, where densely packed hydrophobic cores are surrounded by swollen hydrophilic chains. The correlation between these hydrophobic cores is described using a hard-sphere structure factor. A Porod law and an Ornstein-Zernike structure factor are adopted to capture the strong forward scattering due to large-scale inhomogeneities and the correlation between polymer strands, respectively. The size of the hydrophobic cores depends on the degree of polymerization of the hydrophobic block: for medium and long hydrophobic blocks, several hydrophobic cores merge together to form a larger core. When the second PAAm network is present, the nanostructures of the first amphiphilic network are less well-defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hild G (1998) Model networks based on “endlinking” processes: synthesis, structure and properties. Prog Polym Sci 23:1019–1149

    Article  CAS  Google Scholar 

  2. Shibayama M (2012) Structure-mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038

    Article  CAS  Google Scholar 

  3. Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291:2031–2047

    Article  CAS  Google Scholar 

  4. Porath J, Sundberg L, Fornsted N, Olsson I (1973) Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption. Nature 245:465–466

    Article  CAS  Google Scholar 

  5. Park D, Keszler B, Galiatsatos V, Kennedy JP (1997) Amphiphilic networks. XI. Mechanical properties and morphology. J Appl Polym Sci 66:901–910

    Article  CAS  Google Scholar 

  6. Pantchev I, Velichkova R, Lakov L, Peshev I, Goethals E (1998) Amphiphilic polyelectrolyte networks derived from 2-oxazolines. Polymer 39:7089–7097

    Article  CAS  Google Scholar 

  7. Hentze H-P, Krämer E, Berton B, Förster S, Antonietti M, Dreja M (1999) Lyotropic mesophases of poly(ethyleneoxide)-b-poly(butadiene) diblockcopolymers and their cross-linking to generate ordered gels. Macromolecules 32:5803–5809

    Article  CAS  Google Scholar 

  8. Simmons MR, Yamasaki EN, Patrickios CS (2000) Cationic amphiphilic model networks: synthesis by group transfer polymerization and characterization of the degree of swelling. Macromolecules 33:3176–3179

    Article  CAS  Google Scholar 

  9. Iván B, Almdal K, Mortensen K, Johannsen I, Kops J (2001) Synthesis, characterization, and structural investigations of poly(ethyl acrylate)-l-polyisobutylene bicomponent conetwork. Macromolecules 34:1579–1585

    Article  Google Scholar 

  10. Vamvakaki M, Patrickios CS (2001) Polyelectrolyte amphiphilic model networks in water: a molecular thermodynamic theory for their microphase separation. J Phys Chem B 105:4979–4986

    Article  CAS  Google Scholar 

  11. Kim J-Y, Song S-H, Kim D-S, Suh K-D (2000) Synthesis of novel amphiphilic pH-sensitive polyurethane networks through water-in-oil soap-free emulsion polymerization process. I. Microstructural differences and swelling behaviors. J Appl Polym Sci 76:2115–2127

    Article  CAS  Google Scholar 

  12. Kim J-Y, Song S-H, Lee J-W, Suh K-D (2001) Synthesis of novel pH-sensitive polyurethane networks through w/o soap-free emulsion polymerization process. II. Mechanical property and biphasic swelling behaviors. J Appl Polym Sci 79:621–630

    Article  CAS  Google Scholar 

  13. Yanul NA, Kirsh YE, Verbrugghe S, Goethals EJ, Du Prez FE (2001) Thermoresponsive properties of poly(N-vinylcaprolactam)-poly(ethylene oxide) aqueous systems: solutions and block copolymer networks. Macromol Chem Phys 202:1700–1709

    Article  CAS  Google Scholar 

  14. Vamvakaki M, Patrickios CS (2002) Synthesis and characterization of electrolytic amphiphilic model networks based on cross-linked star polymers: effect of star architecture. Chem Mater 14:1630–1638

    Article  CAS  Google Scholar 

  15. Gitsov I, Zhu C (2002) Amphiphilic hydrogels constructed by poly(ethylene glycol) and shape-persistent dendritic fragments. Macromolecules 35:8418–8427

    Article  CAS  Google Scholar 

  16. Triftaridou AI, Hadjiyannakou SC, Vamvakaki M, Patrickios CS (2002) Synthesis, characterization and modeling of cationic amphiphilic model hydrogels: effects of polymer composition and architecture. Macromolecules 35:2506–2513

    Article  CAS  Google Scholar 

  17. Christova D, Velichkova R, Goethals EJ, Du Prez FE (2002) Amphiphilic segmented polymer networks based on poly(2-alkyl-2-oxazoline) and poly(methyl methacrylate). Polymer 43:4585–4590

    Article  CAS  Google Scholar 

  18. Patrickios CS, Georgiou TK (2003) Covalent amphiphilic polymer networks. Curr Opinion Colloid Interface Sci 8:76–85

    Article  CAS  Google Scholar 

  19. Georgiou TK, Vamvakaki M, Patrickios CS (2004) Microphase separation under constraints: a molecular thermodynamic theory for polyelectrolytic amphiphilic model networks in water. Polymer 45:7341–7355

    Article  CAS  Google Scholar 

  20. Bruns N, Tiller JC (2005) Amphiphilic network as nanoreactor for enzymes in organic solvents. Nano Lett 5:45–48

    Article  CAS  Google Scholar 

  21. Erdodi G, Kennedy JP (2006) Amphiphilic conetworks: definition, synthesis, applications. Prog Polym Sci 31:1–18

    Article  CAS  Google Scholar 

  22. Vamvakaki M, Patrickios CS, Lindner P, Gradzielski M (2007) Amphiphilic networks based on cross-linked star polymers: a small-angle neutron scattering study. Langmuir 23:10433–10437

    Article  CAS  Google Scholar 

  23. Kafouris D, Gradzielski M, Patrickios CS (2009) Semisegmented amphiphilic polymer conetworks: synthesis and characterization. Macromolecules 42:2972–2980

    Article  CAS  Google Scholar 

  24. Pafiti KS, Loizou E, Patrickios CS, Porcar L (2010) End-linked semifluorinated amphiphilic polymer conetworks: synthesis by sequential reversible addition-fragmentation chain transfer polymerization and characterization. Macromolecules 43:5195–5204

    Article  CAS  Google Scholar 

  25. Scherble J, Thomann R, Iván B, Mülhaupt R (2001) Formation of CdS nanoclusters in phase-separated poly(2-hydroxyethyl methacrylate)-l-polyisobutylene amphiphilic conetworks. J Polym Sci, Part B: Polym Phys 39:1429–1436

    Article  CAS  Google Scholar 

  26. Nishi S, Kotaka T (1986) Complex-forming poly(oxyethylene)/poly(acrylic acid) interpenetrating polymer networks. 2. Function as a chemical valve. Macromolecules 19:978–984

    Article  CAS  Google Scholar 

  27. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  28. Tominaga T, Tirumala VR, Lin EK, Gong JP, Furukawa H, Osada Y, Wu W-l (2007) The molecular origin of enhanced toughness in double-network hydrogels: a neutron scattering study. Polymer 48:7449–7454

    Article  CAS  Google Scholar 

  29. Tominaga T, Tirumala VR, Lee S, Lin EK, Gong JP, Wu W-l (2008) Thermodynamic interactions in double-network hydrogels. J Phys Chem B 112:3903–3909

    Article  CAS  Google Scholar 

  30. Chen Q, Wei D, Chen H, Zhu L, Jiao C, Liu G, Huang L, Yang J, Wang L, Zheng J (2015) Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first, physically linked network. Macromolecules 48:8003–8010

    Article  CAS  Google Scholar 

  31. Rikkou-Kalourkoti M, Kitiri EN, Patrickios CS, Leontidis E, Constantinou M, Constantinides G, Zhang X, Papadakis CM (2016) Double-networks based on amphiphilic cross-linked star block copolymer first conetworks and randomly cross-linked hydrophilic second networks. Macromolecules 49:1731–1742

    Article  CAS  Google Scholar 

  32. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900

    Article  CAS  Google Scholar 

  33. Bartlett P, Ottewil RH (1992) A neutron scattering study of the structure of a bimodal colloidal crystal. J Chem Phys 96:3306–3318

    Article  CAS  Google Scholar 

  34. Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110:1–13

    Article  CAS  Google Scholar 

  35. Kinning DJ, Thomas EL (1984) Hard-sphere interactions between spherical domains in diblock copolymers. Macromolecules 17:1712–1718

    Article  CAS  Google Scholar 

  36. Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropylacrylamide) gels near their volume-phase transition. J Chem Phys 97:6829–6841

    Article  CAS  Google Scholar 

  37. Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloidalen Systemen. Kolloid-Z 124:83–114

    Article  CAS  Google Scholar 

  38. Shibayama M (2011) Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms. Polym J 43:18–34

  39. Schmidt PW (1982) Interpretation of small-angle scattering curves proportional to a negative power of the scattering vector. J Applied Crystallogr 15:567–569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the European Regional Development Fund, the Republic of Cyprus, and the Cyprus Research Promotion Foundation for jointly funding projects DIDAKTOR/0311/80, NEKYP/0311/27, and NEKYP/0308/02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Costas S. Patrickios or Christine M. Papadakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Kyriakos, K., Rikkou-Kalourkoti, M. et al. Amphiphilic single and double networks: a small-angle X-ray scattering investigation. Colloid Polym Sci 294, 1027–1036 (2016). https://doi.org/10.1007/s00396-016-3856-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3856-0

Keywords

Navigation