Skip to main content
Log in

Poor solvent as a nucleating agent to induce poly(ε-caprolactone) ultrathin film crystallization on poly(vinylpyrrolidone) substrate

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The poor solvent (hexanol)-induced crystallization of poly(ε-caprolactone) (PCL) ultrathin film on poly(vinylpyrrolidone) (PVPY) substrate is studied by using atomic force microscopy (AFM). PCL single crystals with screw dislocations melt and wet on PVPY substrate, forming a PCL ultrathin film with continuously changed film thickness. The effect of film thickness on the PCL crystallization morphology is directly observed by using the wetted PCL ultrathin film. Morphology transition from compact seaweed (CS) to fractal dendrite (FD) occurs with the decrease of the film thickness. A lot of dispersed FDs appear when PCL ultrathin film recrystallizes in the presence of minute amount of hexanol. We denote it as a “multi-nuclei” phenomenon. The content of residual hexanol is regulated by changing sample drying time under vacuum or sample melting temperature. Results show that the condition to obtain the highest nuclei density (or crystal density) is that the sample is dried under vacuum at room temperature for 24 h during sample preparation and melts at 200 °C for 10 min before recrystallization. If hexanol evaporates completely, the large area of FD grows continuously and no multi-nuclei phenomenon occurs. The interaction between PCL and PVPY substrate is excluded as the reason of the induction of multi-nuclei phenomenon. PVPY which blended in the PCL ultrathin film during the sample preparation is immiscible with PCL and inhibits the nucleation and crystallization of PCL. In this work, poor solvent provides us a new method to find nucleating agent for polymer thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tashiro K, Yoshioka A (2002) Macromolecules 35:410–414

    Article  CAS  Google Scholar 

  2. Yoshioka A, Yashiro K (2004) Macromolecules 37:467–472

    Article  CAS  Google Scholar 

  3. Duming CJ, Rebenfeld L, Russel WB, Weigmann HD, Polym J (1986) Sci Part B Polym Phys 24:1341–1360

    Article  Google Scholar 

  4. Liu J, Chen L, Gao B, Cao X, Han Y, Xie Z, Wang L (2013) J Mater Chem A 1:6216–6225

    Article  CAS  Google Scholar 

  5. Miller S, Fanchini G, Lin Y, Li C, Chen C, Su W, Chhowalla M (2008) J Mater Chem 18:306–312

    Article  CAS  Google Scholar 

  6. Sun Y, Han Y, Liu J (2013) Chinese Sci Bull 58:2767–2774

    Article  CAS  Google Scholar 

  7. Chen HP, Hu S, Zang HD, Hu B, Dadmun M (2013) Adv Funct Mater 23:1701–1710

    Article  CAS  Google Scholar 

  8. Mareau VH, Prud’homme RE (2005) Polymer 46:7255–7265

    Article  CAS  Google Scholar 

  9. Schonherr H, Frank CW (2003) Macromolecules 36:1188–1198

    Article  Google Scholar 

  10. Gopalan SA, Seo MH (2014) J Mater Chem A 2:2174–2186

    Article  CAS  Google Scholar 

  11. Huo H, Yang Y, Zhao X (2014) CrystEngComm 16:1351–1358

    Article  CAS  Google Scholar 

  12. Yang Y, Huo H, Polym J (2013) Sci Part B Polym Phys 51:1162–1174

    Article  CAS  Google Scholar 

  13. Huo H, Yao X, Zhang Y, Li J, Shang Y, Jiang S (2013) Polym Eng Sci 53:125–133

    Article  CAS  Google Scholar 

  14. Jiang Y, Yan D, Gao X, Han CC, Jin X, Li L, Wang Y, Chan C (2003) Macromolecules 36:3652–3655

    Article  CAS  Google Scholar 

  15. Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R (2002) J Macromol Sci B B41:1033–1042

    Article  CAS  Google Scholar 

  16. Zhu DS, Liu YX, Chen EQ, Li M, Cheng SZ (2006) Acta Polym Sin 9:1125–1128

    Google Scholar 

  17. Qiao C, Jiang S, Ji X, An L (2013) Chinese J Polym Sci 31:1321–1328

    Article  CAS  Google Scholar 

  18. Jin L, Zhang G, Zhai X, Ma Z, Zheng P, Wang W (2009) Polymer 50:6157–6165

    Article  CAS  Google Scholar 

  19. Brener E, Muller-Krumbhaar H, Temkin D (1992) Europhys Lett 17:535–540

    Article  Google Scholar 

  20. Sakai Y, Imai M, Kaji K, Tsuji M (1999) J Cryst Growth 203:244–254

    Article  CAS  Google Scholar 

  21. Reiter G, Sommer JU (1998) Phys Rev Lett 80:3771–3774

    Article  CAS  Google Scholar 

  22. Qiao C, Zhao J, Jiang S, Ji X, An L, Jiang B, Polym J (2005) Sci Part B Polym Phys 43:1303–1309

    Article  CAS  Google Scholar 

  23. Maillard D, Prud’homme RE (2006) Macromolecules 39:4272–4275

    Article  CAS  Google Scholar 

  24. Sanandaji N, Ovaskainen L, Gunnewiek MK, Vancso GJ, Hedenqvist MS, Yu S, Eriksson L, Roth SV, Gedde UW (2013) Polymer 54:1497–1503

    Article  CAS  Google Scholar 

  25. Yang J, Liao Q, Zhou J, Jiang X, Wang X, Zhang Y, Jiang S, Yan S, Li L (2011) Macromolecules 44:3511–3516

    Article  CAS  Google Scholar 

  26. Beekmans LGM, Vallee R, Vancso J (2002) Macromolecules 35:9383–9390

    Article  CAS  Google Scholar 

  27. Yoon JG, Zin WC, Kim JH (2012) Polymer 53:2744–2750

    Article  CAS  Google Scholar 

  28. Mareau VH, Prud’homme RE (2005) Macromolecules 38:398–408

    Article  CAS  Google Scholar 

  29. Liu KJ, Jin M, La RX, Zhang J, Wang T, Zhang X (2014) Mater Lett 125:209–212

    Article  CAS  Google Scholar 

  30. Huo H, Jiang S, An L, Feng J (2004) Macromolecules 37:2478–2483

    Article  CAS  Google Scholar 

  31. Fukushima K, Tabuani D, Arena M, Gennari M, Camino G (2013) React Funct Polym 73:540–549

    Article  CAS  Google Scholar 

  32. Huo H, Guo C, Zhou J, Zhao X (2014) Colloid Polym Sci 292:971–983

    Article  CAS  Google Scholar 

  33. Marco C, Ellis G, Gomez MA, Arribas JM (2002) J Appl Polym Sci 84:2440–2450

    Article  CAS  Google Scholar 

  34. Ye H, Tang Y, Xu J, Guo B (2013) Ind Eng Chem Res 52:10682–10689

    Article  CAS  Google Scholar 

  35. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, Pagani S, Guizzardi S, Causa F, Giunti A (2003) Biomaterials 24:3815–3824

    Article  CAS  Google Scholar 

  36. Ruelle B, Peeterbroeck S, Bittencourt C, Gorrasi G, Patimo G, Hecq M, Snyders R, De Pasquate S, Dubois P (2012) React Funct Polym 72:383–392

    Article  CAS  Google Scholar 

  37. Phillips PJ, Rensch GJ, Taylor KDJ, Polym J (1987) Sci Part B Polym Phys 25:1725–1740

    Article  CAS  Google Scholar 

  38. Phillips PJ, Rensch GJ, Polym J (1989) Sci Part B Polym Phys 27:155–173

    Article  CAS  Google Scholar 

  39. You C, Shi X (2001) Polym Material Sci Eng 17:162–164

    CAS  Google Scholar 

  40. He M, Chen W, Dong X (1990) Polymer Physics. Fudan University Press, p.114-120

  41. Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y (2001) Biomacromolecules 2:940–945

    Article  CAS  Google Scholar 

  42. Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y, Doi Y (2003) Macromol Chem Phys 204:1822–1831

    Article  CAS  Google Scholar 

  43. Izumi K, Ping G, Hashimoto M, Toda A, Miyaji H, Miyamoto Y (1997) Advances in the understanding of crystal growth mechanisms. Elsevier Science B. V, Amsterdam, p. 337–48

    Google Scholar 

  44. Kressler J, Wang C (1997) Langmuir 13:4407–4412

    Article  CAS  Google Scholar 

  45. Maillard D, Prud’homme RE (2008) Macromolecules 41:1705–1712

    Article  CAS  Google Scholar 

  46. Woo E, Park M, Jeong YG, Shin K (2012) J Appl Polym Sci 123:2558–2565

    Article  CAS  Google Scholar 

  47. Napolitano S, Wubbenhorst M (2007) J Phys Conds Matter 19:205121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Huo.

Ethics declarations

The sources of financial funding and support

This work is supported by the National Natural Science Foundation of China Programs (20804005) and Beijing Higher Education Young Elite Teacher Project.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 922 kb)

ESM 2

(DOCX 86 kb)

ESM 3

(DOCX 519 kb)

ESM 4

(DOCX 1230 kb)

ESM 5

(DOCX 949 kb)

ESM 6

(DOCX 66 kb)

ESM 7

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Huo, H. Poor solvent as a nucleating agent to induce poly(ε-caprolactone) ultrathin film crystallization on poly(vinylpyrrolidone) substrate. Colloid Polym Sci 294, 767–776 (2016). https://doi.org/10.1007/s00396-015-3821-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3821-3

Keywords

Navigation