Skip to main content
Log in

Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Hollow fiber membranes with satisfied blood compatibility and antibacterial property are desired in blood purification. Herein, a series of heparin-like copolymers of poly(methyl methacrylate-vinyl pyrrolidone -sodium styrene sulfonate-sodium acrylate) (poly(MMA-VP-SSNa-SA)) were synthesized by free radical solution polymerization. The mixture was directly blended with polyethersulfone (PES) solution to prepare hollow fiber membranes. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Blood compatibility of the hollow fiber membranes was evaluated via protein adsorption, platelet adhesion, clotting time, and hemolysis assay. Besides, Ag nanoparticles were immobilized onto the hollow fiber membranes efficiently by a simple and green method, and the antibacterial property and blood compatibility of the Ag-loaded membranes were then investigated. The results indicated that the approach towards blood compatible and antibacterial hollow fiber membrane is efficient and flexible for the modification for membrane materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao CS, Xue JM, Ran F, Sun SD (2013) Modification of polyethersulfone membranes—a review of methods. Prog Mater Sci 58(1):76–150

    Article  CAS  Google Scholar 

  2. Min MH, Shen LD, Hong GS, Zhu MF, Zhang Y, Wang XF, Chen YM, Hsiao BS (2012) Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution. Chem Eng J 197:88–100

    Article  CAS  Google Scholar 

  3. Maximous N, Nakhla G, Wan W, Wong K (2009) Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J Membr Sci 341(1):67–75

    Article  CAS  Google Scholar 

  4. Zhao YF, Zhang PB, Sun J, Liu CJ, Yi Z, Zhu LP, Xu YY (2015) Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. J Colloid Interface Sci 448:380–388

    Article  CAS  Google Scholar 

  5. Xie Y, Li SS, Jiang X, Xiang T, Wang R, Zhao CS (2015) Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility. J Colloid Interface Sci 443:36–44

    Article  CAS  Google Scholar 

  6. Zhu LP, Yi Z, Liu F, Wei XZ, Zhu BK, Xu YY (2008) Amphiphilic graft copolymers based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride) with poly(ethylene glycol) side chains for surface modification of polyethersulfone membranes. Eur Polym J 44(6):1907–1914

    Article  CAS  Google Scholar 

  7. Wang HT, Yu T, Zhao CY, Du QY (2009) Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fiber Polym 10(1):1–5

    Article  Google Scholar 

  8. Wei ZM, Zhang QC, Peng ML, Wang XJ, Yang J (2014) Preparation and drug delivery study of electrospun hollow PES ultrafine fibers with a multilayer wall. Colloid Polym Sci 292(6):1339–1345

    Article  CAS  Google Scholar 

  9. Samuel U, Guggenbichler J (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23:75–78

    Article  Google Scholar 

  10. Hung HS, Hsu SH (2007) Biological performances of poly (ether) urethane–silver nanocomposites. Nanotechnology 18(47):475101

    Article  Google Scholar 

  11. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J-B (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61(4):869–876

    Article  CAS  Google Scholar 

  12. Li J, Nie SQ, Wang LR, Sun SD, Ran F, Zhao CS (2013) One-pot synthesized poly (vinyl pyrrolidone-co-methyl methacrylate-co-acrylic acid) blended with poly (ether sulfone) to prepare blood-compatible membranes. J Appl Polym Sci 130(6):4284–4298

    Article  CAS  Google Scholar 

  13. Zou W, Huang Y, Luo J, Liu J, Zhao CS (2010) Poly (methyl methacrylate–acrylic acid–vinyl pyrrolidone) terpolymer modified polyethersulfone hollow fiber membrane with pH sensitivity and protein antifouling property. J Membr Sci 358(1):76–84

    Article  CAS  Google Scholar 

  14. Huang DH, Woo EM, Lee LT (2006) A comparative study on transreactions induced phase changes in blends of poly(trimethylene terephthalate) and poly(ethylene naphthalate) upon annealing. Colloid Polym Sci 284(8):843–852

    Article  CAS  Google Scholar 

  15. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588

    Article  CAS  Google Scholar 

  16. Xie CM, Lu X, Wang KF, Meng FZ, Jiang O, Zhang HP, Zhi W, Fang LM (2014) Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl Mater Interfaces 6(11):8580–8589

    Article  CAS  Google Scholar 

  17. An J, Zhang H, Zhang JT, Zhao YH, Yuan XY (2009) Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid Polym Sci 287(12):1425–1434

    Article  CAS  Google Scholar 

  18. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11

    Article  CAS  Google Scholar 

  19. Xia Y, Cheng C, Wang R, Qin H, Zhang Y, Ma L, Tan H, Gu ZW, Zhao CS (2014) Surface-engineered nanogel assemblies with integrated blood compatibility, cell proliferation and antibacterial property: towards multifunctional biomedical membranes. Polym Chem 5(20):5906–5919

    Article  CAS  Google Scholar 

  20. Cao XL, Tang M, Liu F, Nie YY, Zhao CS (2010) Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids Surf B 81(2):555–562

    Article  CAS  Google Scholar 

  21. Li XG, Liu R, Huang MR (2005) Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chem Mater 17(22):5411–5419

    Article  CAS  Google Scholar 

  22. Zhang M, Zhang Y, Helleur R (2015) Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea–glutaraldehyde. Chem Eng J 264:56–65

    Article  CAS  Google Scholar 

  23. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157

    Article  CAS  Google Scholar 

  24. Miao L-J, Xin J-W, Shen Z-Y, Zhang Y-J, Wang H-Y, Wu A-G (2013) Exploring a new rapid colorimetric detection method of Cu 2+ with high sensitivity and selectivity. Sensors Actuators B Chem 176:906–912

    Article  CAS  Google Scholar 

  25. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    Article  CAS  Google Scholar 

  26. Ran F, Nie S, Yin Z, Li J, Su B, Sun S, Zhao C (2013) Synthesized negatively charged macromolecules (NCMs) for the surface modification of anticoagulant membrane biomaterials. Int J Biol Macromol 55:269–275

    Article  CAS  Google Scholar 

  27. Chung TS, Qin JJ, Gu J (2000) Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chem Eng Sci 55(6):1077–1091

    Article  CAS  Google Scholar 

  28. Shi ZQ, Huang XL, Wang C, Li YF, He C, Zhao CS (2014) In situ cross-linked polymerization toward poly(ether sulfone)/poly(sodium acrylate) hybrid particles for the removal of environmental toxins. Ind Eng Chem Res 53(36):14084–14093

    Article  CAS  Google Scholar 

  29. Zhao WF, He C, Wang HY, Su BH, Sun SD, Zhao CS (2011) Improved antifouling property of polyethersulfone hollow fiber membranes using additive of poly(ethylene glycol) methyl ether-b-poly (styrene) copolymers. Ind Eng Chem Res 50(6):3295–3303

    Article  CAS  Google Scholar 

  30. Wang R, Xiang T, Yue WW, Li HJ, Liang S, Sun SD, Zhao CS (2012) Preparation and characterization of pH-sensitive polyethersulfone hollow fiber membranes modified by poly(methyl methylacrylate-co-4-vinyl pyridine) copolymer. J Membr Sci 423:275–283

    Google Scholar 

  31. Dean JA (1985) Lange’s handbook of chemistry

  32. Yin ZH, Su BH, Nie SQ, Wang DS, Sun SD, Zhao CS (2012) Poly (vinylpyrrolidone-co-acrylonitrile-co-vinylpyrrolidone) modified polyethersulfone hollow fiber membranes with improved blood compatibility. Fiber Polym 13(3):269–276

    Article  CAS  Google Scholar 

  33. Nie SQ, Qin H, Cheng C, Zhao WF, Sun SD, Su BH, Zhao C, Gu ZW (2014) Blood activation and compatibility on single-molecular-layer biointerfaces. J Mater Chem B 2(30):4911–4921

    Article  CAS  Google Scholar 

  34. Cheng C, Nie SQ, Li S, Peng H, Yang H, Ma L, Sun SD, Zhao CS (2013) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B 1(3):265–275

    Article  CAS  Google Scholar 

  35. Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615

    Article  CAS  Google Scholar 

  36. Zhang LL, Jiang YH, Ding YL, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9(3):479–489

    Article  Google Scholar 

  37. Shi H, Liu F, Xue L, Lu H, Zhou Q (2014) Enhancing antibacterial performances of PVDF hollow fibers by embedding Ag-loaded zeolites on the membrane outer layer via co-extruding technique. Compos Sci Technol 96:1–6

    Article  CAS  Google Scholar 

  38. Zhang SC, Liu T, Chen L, Ren ML, Zhang B, Wang ZG, Wang YJ (2012) Bifunctional polyethersulfone hollow fiber with a porous, single-layer skin for use as a bioartificial liver bioreactor. J Mater Sci 23(8):2001–2011

    CAS  Google Scholar 

  39. Wang J, Lang WZ, Xu HP, Zhang X, Guo YJ (2015) Improved poly(vinyl butyral) hollow fiber membranes by embedding multi-walled carbon nanotube for the ultrafiltrations of bovine serum albumin and humic acid. Chem Eng J 260:90–98

    Article  CAS  Google Scholar 

  40. Ma Y, Shi F, Ma J, Wu M, Zhang J, Gao C (2011) Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes. Desalination 272(1):51–58

    Article  CAS  Google Scholar 

  41. Rahimpour A, Madaeni SS (2010) Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. J Membr Sci 360(1):371–379

    Article  CAS  Google Scholar 

  42. Saljoughi E, Mohammadi T (2009) Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: preparation, morphology and performance. Desalination 249(2):850–854

    Article  CAS  Google Scholar 

  43. Alsalhy QF, Salih HA, Simone S, Zablouk M, Drioli E, Figoli A (2014) Poly(ether sulfone) (PES) hollow-fiber membranes prepared from various spinning parameters. Desalination 345:21–35

    Article  CAS  Google Scholar 

  44. Peng JM, Su YL, Chen WJ, Shi Q, Jiang ZY (2010) Effects of coagulation bath temperature on the separation performance and antifouling property of poly(ether sulfone) ultrafiltration membranes. Ind Eng Chem Res 49(10):4858–4864

    Article  CAS  Google Scholar 

  45. Nie S, Xue J, Lu Y, Liu Y, Wang D, Sun S, Ran F, Zhao C (2012) Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. Colloids Surf B 100:116–125

    Article  CAS  Google Scholar 

  46. Andrade J, Hlady V (1987) Plasma protein adsorption: the big twelve. Ann N Y Acad Sci 516(1):158–172

    Article  CAS  Google Scholar 

  47. Su YL, Cheng W, Li C, Jiang ZY (2009) Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers. J Membr Sci 329(1):246–252

    Article  CAS  Google Scholar 

  48. Wavhal DS, Fisher ER (2003) Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling. Langmuir 19(1):79–85

    Article  CAS  Google Scholar 

  49. Kamal AH, Tefferi A, Pruthi RK (2007) How to interpret and pursue an abnormal prothrombin time, activated partial thromboplastin time, and bleeding time in adults. Mayo Clin Proc 82(7):864–873

    Article  CAS  Google Scholar 

  50. Teotia RS, Dahe GJ, Bellare J (2014) In-situ coating of 2-methacryloyloxyethyl phosphorylcholine polymer on polysulfone hollow fiber membranes for hemodialysis. Adv Sci Lett 20(5-6):1191–1197

    Article  Google Scholar 

  51. Wang LR, Su BH, Cheng C, Ma L, Li SS, Nie SQ, Zhao CS (2015) Layer by layer assembly of sulfonic poly(ether sulfone) as heparin-mimicking coatings: scalable fabrication of super-hemocompatible and antibacterial membranes. J Mater Chem B 3(7):1391–1404

    Article  CAS  Google Scholar 

  52. Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2001) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  Google Scholar 

  53. Lee DW, Powers K, Baney R (2004) Physicochemical properties and blood compatibility of acylated chitosan nanoparticles. Carbohydr Polym 58(4):371–377

    Article  CAS  Google Scholar 

  54. Stevens KN, Crespo-Biel O, van den Bosch EE, Dias AA, Knetsch ML, Aldenhoff YB, van der Veen FH, Maessen JG, Stobberingh EE, Koole LH (2009) The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 30(22):3682–3690

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially sponsored by the National Natural Science Foundation of China (Nos. 51225303 and 51433007) and the State Key Laboratory of Polymer Materials Engineering (No. sklpme2015-1-03). We should also thank our laboratory members for their generous help and gratefully acknowledge the help of Ms. Hui Wang of the Analytical and Testing Center at Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Dong Sun or Chang-Sheng Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2,314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, ZQ., Ji, HF., Yu, HC. et al. Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. Colloid Polym Sci 294, 441–453 (2016). https://doi.org/10.1007/s00396-015-3801-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3801-7

Keywords

Navigation