Skip to main content
Log in

Tailoring crystallization behavior of poly (l-lactide) with a low molecular weight aliphatic amide

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A low molecular weight aliphatic amide, N, N′-ethylenebis (12-hydroxystearamide) (EBH), was selected to tailor the crystallization behavior of poly (l-lactide) (PLLA). The effect of EBH on the crystallization kinetics, fine crystalline structure, and molecular mobility of PLLA has been systematically investigated. It has been found that the crystallizability of PLLA, including crystallization rate and crystallinity, can be promoted significantly by the addition of only 1 wt% EBH. Both the nucleation density and linear growth rate of spherulites have been improved, which together contributed to the decrease of overall crystallization time. The long period and lamellar thickness of PLLA crystals increased gradually with the isothermal crystallization temperature, whereas they were less influenced by the incorporation of EBH. Dynamic mechanical analysis proved that the mobility of PLLA chains was also increased in the presence of EBH. The accelerating effect of EBH on both the nucleation and molecular mobility of PLLA was supposed to be the hydrogen-bonding interaction between the hydroxyl groups in EBH and carboxyl groups in PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  2. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  3. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers—polylactide: a critique. Eur Polym J 43:4053–4074

    Article  CAS  Google Scholar 

  4. Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaresi C (1997) Biodegradable fibres of poly(L-lactic acid) produced by melt spinning. Polymer 38:79–85

    Article  CAS  Google Scholar 

  5. Kim HD, Bae EH, Kwon IC, Pal RR, Nam JD, Lee DS (2004) Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials 25:2319–2329

    Article  CAS  PubMed  Google Scholar 

  6. Ma Z, Gao C, Gong Y, Shen J (2005) Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 26:1253–1259

    Article  CAS  PubMed  Google Scholar 

  7. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  8. Bergsma JE, Bos RRM, Rozema FR, DeJong W, Boering G (1996) Biocompatibility of intraosseously implanted predegraded poly(lactide): an animal study. J Mater Sci-Mater M 7:1–7

    CAS  Google Scholar 

  9. Aou K, Kang SH, Hsu SL (2005) Morphological study on thermal shrinkage and dimensional stability associated with oriented poly(lactic acid). Macromolecules 38:7730–7735

    Article  CAS  Google Scholar 

  10. Zhang W, Chen L, Zhang Y (2009) Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 50:1311–1315

    Article  CAS  Google Scholar 

  11. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  12. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  13. Zhang X, Li R, Kong L, Wang D (2008) Stress-induced structure transition of syndiotactic polypropylene via melt spinning. Polymer 49:1350–1355

    Article  CAS  Google Scholar 

  14. Li R, Zhang X, Zhao Y, Hu X, Zhao X, Wang D (2009) New polypropylene blends toughened by polypropylene/poly(ethylene-co-propylene) in-reactor alloy: compositional and morphological influence on mechanical properties. Polymer 50:5124–5133

    Article  CAS  Google Scholar 

  15. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  16. Andricic B, Kovacic T, Perinovic S, Grgic A (2008) Thermal properties of poly(L-lactide)/calcium carbonate nanocomposites. Macromol Symp 263:96–101

    Article  CAS  Google Scholar 

  17. Hu X, An HN, Li ZM, Geng Y, Li LB, Yang CL (2009) Origin of carbon nanotubes induced poly(L-lactide) crystallization: surface induced conformational order. Macromolecules 42:3215–3218

    Article  CAS  Google Scholar 

  18. Krikorian V, Pochan DJ (2003) Poly (L-lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties. Chem Mater 15:4317–4324

    Article  CAS  Google Scholar 

  19. Krikorian V, Pochan DJ (2004) Unusual crystallization behavior of organoclay reinforced poly(L-lactic acid) nanocomposites. Macromolecules 37:6480–6491

    Article  CAS  Google Scholar 

  20. Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, Wang Z (2010) Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 51:730–737

    Article  CAS  Google Scholar 

  21. Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131

    Article  CAS  Google Scholar 

  22. Kim KS, Chin IJ, Yoon JS, Choi HJ, Lee DC, Lee KH (2001) Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/poly(vinyl acetate) blends. J Appl Polym Sci 82:3618–3626

    Article  CAS  Google Scholar 

  23. Stoclet G, Seguela R, Lefebvre JM (2011) Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: polylactide/polyamide11. Polymer 52:1417–1425

    Article  CAS  Google Scholar 

  24. Anderson KS, Hillmyer MA (2006) Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47:2030–2035

    Article  CAS  Google Scholar 

  25. Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR (2006) Crystallization, morphology, and mechanical behavior of polylactide/poly(epsilon-caprolactone) blends. Polym Eng Sci 46:1299–1308

    Article  CAS  Google Scholar 

  26. Sakai F, Nishikawa K, Inoue Y, Yazawa K (2009) Nucleation enhancement effect in poly(L-lactide) (PLLA)/poly(epsilon-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility. Macromolecules 42:8335–8342

    Article  CAS  Google Scholar 

  27. Xing Q, Dong X, Li R, Yang H, Han CC, Wang D (2013) Morphology and performance control of PLLA-based porous membranes by phase separation. Polymer 54:5965–5973

    Article  CAS  Google Scholar 

  28. Tsuji H, Tashiro K, Bouapao L, Narita J (2008) Polyglycolide as a biodegradable nucleating agent for poly(L-lactide). Macromol Mater Eng 293:947–951

    Article  CAS  Google Scholar 

  29. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B (2000) Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 41:8909–8919

    Article  CAS  Google Scholar 

  30. Tu C, Jiang S, Li H, Yan S (2013) Origin of epitaxial cold crystallization of poly(L-lactic acid) on highly oriented polyethylene substrate. Macromolecules 46:5215–5222

    Article  CAS  Google Scholar 

  31. Xing Q, Zhang X, Luo F, Liu G, Wang D (2011) Influence of stretching on crystallization behavior of poly(L-lactic acid). Chem J Chinese U 32:971–977

    CAS  Google Scholar 

  32. Stoclet G, Seguela R, Lefebvre JM, Elkoun S, Vanmansart C (2010) Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 43:1488–1498

    Article  CAS  Google Scholar 

  33. Stoclet G, Seguela R, Lefebvre JM, Rochas C (2010) New insights on the strain-induced mesophase of poly(D,L-lactide): in situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 43:7228–7237.

    Article  CAS  Google Scholar 

  34. Li X, Zhong G, Li Z (2010) Non-isothermal crystallization of poly(L-lactide) (PLLA) under quiescent and steady shear conditions. Chinese J Polym Sci 28:357–366

    Article  CAS  Google Scholar 

  35. Li XJ, Li ZM, Zhong GJ, Li LB (2008) Steady-shear-induced isothermal crystallization of poly(L-lactide) (PLLA). J Macromol Sci B 47:511–522

    Article  CAS  Google Scholar 

  36. Zhong Y, Fang H, Zhang Y, Wang Z, Yang J, Wang Z (2013) Rheologically determined critical shear rates for shear-induced nucleation rate enhancements of poly(lactic acid). ACS Sustainable Chem Eng 1:663–672

    Article  CAS  Google Scholar 

  37. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Nucleating agent for poly(L-lactic acid)—an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci 103:198–203

    Article  CAS  Google Scholar 

  38. Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513

    Article  CAS  Google Scholar 

  39. Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(L-lactide) as an efficient nucleating agent. Ind Eng Chem Res 50:12299–12303

    Article  CAS  Google Scholar 

  40. Bai H, Zhang W, Deng H, Zhang Q, Fu Q (2011) Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecules 44:1233–1237

    Article  CAS  Google Scholar 

  41. Wittmann JC, Lotz B (1990) Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci 15:909–948

    Article  CAS  Google Scholar 

  42. Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:1340–1347

    Article  CAS  Google Scholar 

  43. Tang Z, Zhang C, Liu X, Zhu J (2012) The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. J Appl Polym Sci 125:1108–1115

    Article  CAS  Google Scholar 

  44. Xing Q, Zhang X, Dong X, Liu G, Wang D (2012) Low-molecular weight aliphatic amides as nucleating agents for poly (L-lactic acid): conformation variation induced crystallization enhancement. Polymer 53:2306–2314

    Article  CAS  Google Scholar 

  45. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym Sci 251:980–990

    CAS  Google Scholar 

  46. Wu Y, Hsu SL, Honeker C, Bravet DJ, Williams DS (2012) The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116:7379–7388

    Article  CAS  PubMed  Google Scholar 

  47. Avrami M (1939) Kinetics of phase change I—general theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  48. Wunderlich B (1976) In: Macromolecular physics, vol 2. Academic Press, New York, pp. 132–147

    Google Scholar 

  49. Supaphol P (2001) Application of the Avrami, Tobin, Malkin, and Urbanovici–Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochim Acta 370:37–48

    Article  CAS  Google Scholar 

  50. Pan H, Qiu Z (2010) Biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43:1499–1506

    Article  CAS  Google Scholar 

  51. Cho JD, Baratian S, Kim J, Yeh FJ, Hsiao BS, Runt J (2003) Crystallization and structure formation of poly(L-lactide-co-meso-lactide) random copolymers: a time-resolved wide- and small-angle X-ray scattering study. Polymer 44:711–717

    Article  CAS  Google Scholar 

  52. Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Inter 1:402–411

    Article  CAS  Google Scholar 

  53. Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A (2002) Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35:2042–2049

    Article  CAS  Google Scholar 

  54. Chinaglia DL, Gregorio Jr. R, Vollet DR (2012) Structural modifications in stretch-induced crystallization in PVDF films as measured by small-angle X-ray scattering. J Appl Polym Sci 125:527–535

    Article  CAS  Google Scholar 

  55. Lorenzo A, Arnal ML, Müller AJ, Lin MC, Chen HL (2011) SAXS/DSC analysis of the lamellar thickness distribution on a SSA thermally fractionated model polyethylene. Macromol Chem Phys 212:2009–2016

    Article  CAS  Google Scholar 

  56. Hosoda S, Nozue Y, Kawashima Y, Suita K, Seno S, Nagamatsu T, et al (2011) Effect of the sequence length distribution on the lamellar crystal thickness and thickness distribution of polyethylene: perfectly equisequential ADMET polyethylene vs ethylene/R-olefin copolymer. Macomolecules 44:313–319

    Article  CAS  Google Scholar 

  57. Mano JF, Wang YM, Viana JC, Denchev Z, Oliveira MJ (2004) Cold crystallization of PLLA studied by simultaneous SAXS and WAXS. Macromol Mater Eng 289:910–915

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant No. 51403210), Project funded by China Postdoctoral Science Foundation (Grant No. 2014 M550801), and President Fund of University of Chinese Academy of Sciences (Grant No. Y35102CN00) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Dong or Liaoyun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Q., Li, R., Zhang, X. et al. Tailoring crystallization behavior of poly (l-lactide) with a low molecular weight aliphatic amide. Colloid Polym Sci 293, 3573–3583 (2015). https://doi.org/10.1007/s00396-015-3730-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3730-5

Keywords

Navigation