Skip to main content
Log in

Structural, morphological, optical, and electrical transport studies of poly(3-methoxythiophene)/NiO hybrid nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Electrically conducting hybrid composites of poly(3-methoxythiophene) (PMOT) and nickel oxide (NiO) (PMOT-NiO) were synthesized by chemical oxidative method with their different proportions. The synthesized PMOT-NiO nanocomposites were characterized for optical, structural, and electrical analysis. Transmission electron microscope (TEM) depicts the morphology of the samples which revealed the transformation of thread morphology of PMOT to the clusters in PMOT-NiO hybrid composites. The structural and optoelectronic properties of hybrid composites were quite different from those of pure PMOT and NiO nanoparticles which were attributed to the chemical interaction between PMOT and NiO nanoparticle. X-ray diffraction (XRD) confirmed the cubic structure of NiO with an average crystallite size of 5 nm. The nanocomposites had lower diffraction peak intensities and smaller interplanar spacing as compared to NiO. Ultraviolet (UV) spectra and fluorescence spectra (PL) showed that the optical behavior of nanocomposites was far superior to PMOT and NiO separately. FTIR spectra revealed that the absorption of PMOT was affected by the presence of NiO nanoparticle. The room-temperature electrical conductivity was increased up to 4.2 × 10−7 Ω/cm−1 with increase in the concentration of NiO content in PMOT-NiO hybrid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sharma GD, Suresh P, Sharma SK, Roy MS (2008) Optical and electrical properties of hybrid photovoltaic devices from poly(3-phenyl hydrazone thiophene) (PPHT) and TiO2 blend films. Sol Energy Mater Sol Cells 92:61–70

    Article  CAS  Google Scholar 

  2. Kalita G, Masahiro M, Koichi W, Umeno M (2010) Nanostructured morphology of P3HT:PCBM bulk heterojunction solar cells. Solid State Electron 54:447–451

    Article  CAS  Google Scholar 

  3. Li F, Chen W, Yuan K, Chen Y (2012) Photovoltaic performance enhancement in P3HT/ZnO hybrid bulk heterojunction solar cells induced by semiconducting liquid crystal ligands. Org Electron 13:2757–2762

    Article  CAS  Google Scholar 

  4. Rajesh B, Thampi KR, Bonard JM, Mathieu HJ, Xanthopoulos M, Viswanathan B (2005) Electronically conducting hybrid material as high performance catalyst support for electrocatalytic applications. J Power Sources 141:35–38

    Article  CAS  Google Scholar 

  5. Vico JM, Redondo SS, Lichtenstein MP, Sunol C, Pastor NC (2014) Nanocomposites of iridium oxides and conducting polymers as electroactive phases in biological media. Acta Biomater 10:2177–2186

    Article  Google Scholar 

  6. Tiwari A (2007) Gum arabic-graft-polyaniline: an electrically active redox biomaterial for sensor applications. J Macromol Sci Part A Pure Appl Chem 44:735–745

    Article  CAS  Google Scholar 

  7. Vats T, Sharma SN, Kumar M, Kar M, Jain K, Singh VK, Mehta BR, Narula AK (2010) Comparison of photostability, optical and structural properties of TiO2/conjugated polymer hybrid composites prepared via different methods. Thin Solid Films 519:1100–1105

    Article  CAS  Google Scholar 

  8. Lu MD, Yang SM (2009) Synthesis of poly(3-hexyl thiophene)grafted TiO2 nanotube composite. J Colloid Interface Sci 333:128–134

    Article  CAS  Google Scholar 

  9. Mastour N, Hamed ZB, Benchaabane A, Sanhoury M, Kouki F (2013) Effect of ZnSe quantum dot concentration on the fluorescence enhancement of polymer P3HT film. Org Electron 14:2093–2100

    Article  CAS  Google Scholar 

  10. Wang ZY, Lee SH, Kim DH, Kim JH, Park JG (2010) Effect of NiOx thin layer fabricated by oxygen-plasma treatment on polymer photovoltaic cell. Sol Energy Mater Sol Cells 94:1591–1596

    Article  CAS  Google Scholar 

  11. Yang H, Gong C, Guai GH, Li CM (2012) Organic solar cells employing electrodeposited nickel oxide nanostructures as the anode buffer layer. Sol Energy Mater Sol Cells 101:256–261

    Article  CAS  Google Scholar 

  12. Zhang W, Xu Y, Wang H, Xu C (2011) Yang S (2011) Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT: PCBM bulk heterojunction polymer solar cells. Sol Energy Mater Sol Cells 95:2880–2885

    Article  CAS  Google Scholar 

  13. Ryu MS, Cha HJ, Jang J (2010) Effects of thermal annealing of polymer: fullerene photovoltaic solar cells for high efficiency. Curr Appl Phys 10:S206–S209

    Article  Google Scholar 

  14. Wang M, Wang X (2008) PPV/TiO2 hybrid composites prepared from PPV precursor reaction in aqueous media and their application in solar cells. Polymer 49:1587–1593

    Article  CAS  Google Scholar 

  15. Chan KH, Yamao T, Kotaki M, Hotta S (2010) Unique structural features and electrical properties of electrospun conjugated poly(3-hexyl thiophene) (P3HT) fibers. Synth Met 160:2587–2595

    Article  CAS  Google Scholar 

  16. Dobrzanski LA, Drak M, Ziebowicz B (2007) New possibilities of composite materials application: materials of specific magnetic properties. J Mater Process Technol 1:352–355

    Article  Google Scholar 

  17. Meybodi SM, Hosseini SA, Rezaee M, Sadrnezhaad SK, Mohammadyani D (2012) Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrason Sonochem 19:841–845

    Article  Google Scholar 

  18. Lee YM, Hsu CH, Chen HW (2009) Structural, optical and electrical properties of p-type NiO films and composite TiO2/NiO electrodes for solid –state dye sensitized solar cells. Appl Surf Sci 255:4658–4663

    Article  CAS  Google Scholar 

  19. Liu M, Chang J, Sun J, Gao L (2013) Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high performance supercapacitor. Electrochim Acta 107:9–15

    Article  CAS  Google Scholar 

  20. Shah MA (2008) A versatile route for the synthesis of nickel oxide nanostructures without organics at low temperature. Nanoscale Res Lett 3:255–259

    Article  CAS  Google Scholar 

  21. Wu MS, Huang YA, Yang CH, Jow JJ (2007) Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int J Hydrog Energy 32:4153–4159

    Article  CAS  Google Scholar 

  22. Sonavane AC, Inamdar AI, Dalavi DS, Deshmukh HP, Patil PS (2010) Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance. Electrochim Acta 55:2344–2351

    Article  CAS  Google Scholar 

  23. Yamamoto T, Shiraishi K, Abla M, Yamaguchi I, Groenedaal LB (2002) Neutral poly (3,4 ethylenedioxy thiophene-2,5-diyl)s: preparation by organometallic polycondensation and their unique p-doping behavior. Polymer 43:711–719

    Article  CAS  Google Scholar 

  24. El MJ, Cullough M, Skotheim RD, Reynolds TA (2007) Handbook of conducting polymers. CRC Press, New York, pp 1–49

    Google Scholar 

  25. Idris NH, Wang J, Chou S, Zhong C, Rahman M (2011) Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium ion batteries. J Mater Res 26:860–866

    Article  CAS  Google Scholar 

  26. Rajasudha G, Nancy AP, Parmasivam T, Boukos N, Narayanan V, Stephen A (2011) Synthesis and characterization of polyindole-NiO based composite polymer electrolyte with LiClO4. Int J Polym Mater 60:877–892

    Article  CAS  Google Scholar 

  27. Van Hal PA, Wienk MM, Kroon JM, Verhees WJ, Sloof LH, Van Gennip WJH, Jonkheijim P, Jannssen RA (2003) Photoinduced electron transfer and photovoltaic response of a MDMO-PPV : TiO2 bulk heterojunction. Adv Mater 15:118–121

    Article  Google Scholar 

  28. Shi Y, Liu J, Yang Y (2000) Device performance and polymer morphology in polymer light emitting diodes: the control of thin film morphology and device quantum efficiency. J Appl Phys 87:4254–4263

    Article  CAS  Google Scholar 

  29. Patil PS, Kadam LD (2002) Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl Surf Sci 199:211–221

    Article  CAS  Google Scholar 

  30. Belhaj M, Dridi C, Elhouichet H (2015) PEE: ZnO hybrid nanocomposites for OLED applications: fabrication and photophysical properties. J Lumin 157:53–57

    Article  CAS  Google Scholar 

  31. Liu J, Huang X, Li Y, Zhong Q, Ren L (2006) Preparation and photoluminescence of ZnO complex structures with controlled morphology. Mater Lett 60:1354–1359

    Article  CAS  Google Scholar 

  32. Raut BT, Godse PR, Pawar SG, Chougule MA, Bandgar DK, Sen S, Patil VB (2013) New process for fabrication of poly aniline –CdS nanocomposites: structural, morphological and optoelectronic investigations. J Phys Chem Solids 74:236–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (Preeti Sehgal) wishes to express the gratitude to Guru Gobind Singh Indraprastha University for providing financial support in the form of Indraprastha Research Fellowship (IPRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anudeep Kumar Narula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehgal, P., Narula, A.K. Structural, morphological, optical, and electrical transport studies of poly(3-methoxythiophene)/NiO hybrid nanocomposites. Colloid Polym Sci 293, 2689–2699 (2015). https://doi.org/10.1007/s00396-015-3663-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3663-z

Keywords

Navigation