Skip to main content
Log in

Synthesis of poly(2-hydroxyethyl methacrylate)-grafted poly(aminoamide) dendrimers as polymeric nanostructures

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Fourth-generation poly(aminoamide) (PAMAM) dendrimer was synthesized via a divergent method with iterative sequence Michael addition or alkylation and amidation reactions with ethylenediamine as primary core and methyl acrylate. Then, its peripheral primary amine groups were conjugated with S-(thiobenzoyl)thioglycolic acid as reversible addition-fragmentation chain transfer (RAFT) agent and poly(2-hydroxyethyl methacrylate) (P(HEMA)) was grafted onto surface via RAFT polymerization. Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and dynamic light scattering (DLS) were used to approve the successful synthesis of different nanostructures. Then, fourth-generation, RAFT-conjugated fourth-generation, and P(HEMA)-grafted fourth-generation PAMAM dendrimers were examined as stimuli-responsive nanostructures. Finally, in vitro cellular cytotoxicity was applied to evaluate the biocompatibility of synthesized dendrimers and investigate the cytotoxic effect of grafted polymer using HeLa cells. As a results, fourth-generation and RAFT-conjugated fourth-generation samples showed no stimuli-responsive behavior while P(HEMA)-grafted fourth-generation PAMAM dendrimer had a LCST of 26 °C. Also, fourth-generation and RAFT-conjugated fourth-generation samples were characterized as toxic compounds while grafting P(HEMA) decreased cytotoxicity significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

References

  1. Qi D, Cao Z, Ziener U (2014) Recent advances in the preparation of hybrid nanoparticles in miniemulsions. Adv Colloid Interf Sci 211:47–62

    Article  CAS  Google Scholar 

  2. Bounor-Legaré V, Cassagnau P (2014) In situ synthesis of organic–inorganic hybrids or nanocomposites from sol–gel chemistry in molten polymers. Prog Polym Sci 39:1473–1497

    Article  Google Scholar 

  3. Panahian P, Salami-Kalajahi M, Salami Hosseini M (2014) Synthesis of dual thermoresponsive and pH-sensitive hollow nanospheres by atom transfer radical polymerization. J Polym Res 21:455

    Article  Google Scholar 

  4. Panahian P, Salami-Kalajahi M, Salami Hosseini M (2014) Synthesis of dual thermosensitive and pH-Sensitive hollow nanospheres based on poly(acrylic acid-b-2-hydroxyethyl methacrylate) via an atom transfer reversible addition-fragmentation radical process. Ind Eng Chem Res 53:8079–8086

    Article  CAS  Google Scholar 

  5. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307

    Article  CAS  Google Scholar 

  6. Sun H-J, Zhang S, Percec V (2015) From structure to function via complex supramolecular dendrimer systems. Chem Soc Rev. doi:10.1039/C4CS00249K

    Google Scholar 

  7. Huang F, You M, Chen T, Zhu G, Liang H, Tan W (2014) Self-assembled hybrid nanoparticles for targeted co-delivery of two drugs into cancer cells. Chem Commun 50:3103–3105

    Article  CAS  Google Scholar 

  8. Somani S, Blatchford DR, Millington O, Stevenson ML, Dufès C (2014) Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J Control Release 188:78–86

    Article  CAS  Google Scholar 

  9. Yang X, Shang H, Ding C, Li J (2015) Recent developments and applications of bioinspired dendritic polymers. Polym Chem 6:668–680

    Article  CAS  Google Scholar 

  10. Kesharwani P, Tekade RK, Jain NK (2014) Formulation development and in vitro–in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. Nanomedicine 9:2291–2308

    Article  CAS  Google Scholar 

  11. Jain NK, Gupta U (2008) Application of dendrimer–drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin Drug Metab Toxicol 4:1035–1052

    Article  CAS  Google Scholar 

  12. Kesharwani P, Tekade RK, Jain NK (2014) Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials 35:5539–5548

    Article  CAS  Google Scholar 

  13. Birdhariya B, Kesharwani P, Jain NK (2015) Effect of surface capping on targeting potential of folate decorated poly(propyleneimine) dendrimers. Drug Dev Ind Pharm. doi:10.3109/03639045.2014.954584

    Google Scholar 

  14. Kaminskas LM, Boyd BJ, Karellas P, Krippner GY, Lessene R, Kelly B, Porter CJH (2008) The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated Poly l-lysine dendrimers. Mol Pharm 5:449–463

    Article  CAS  Google Scholar 

  15. Hoffman LW, Andersson GG, Sharma A, Clarke SR, Voelcker NH (2011) New insights into the structure of PAMAM dendrimer/gold nanoparticle nanocomposites. Langmuir 27:6759–6767

    Article  CAS  Google Scholar 

  16. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4:31428–31442

    Article  CAS  Google Scholar 

  17. Nikdel M, Salami-Kalajahi M, Salami Hosseini M (2014) Dual thermo- and pH-sensitive poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted graphene oxide. Colloid Polym Sci 292:2599–2610

    Article  CAS  Google Scholar 

  18. Nikdel M, Salami-Kalajahi M, Salami Hosseini M (2014) Synthesis of poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted graphene oxide nanosheets via reversible addition–fragmentation chain transfer polymerization. RSC Adv 4:16743–16750

    Article  CAS  Google Scholar 

  19. Sarsabili M, Parvini M, Salami-Kalajahi M, Ganjeh-Anzabi P (2013) In situ reversible addition–fragmentation chain transfer polymerization of styrene in the presence of MCM-41 nanoparticles: comparing “grafting from” and “grafting through” approaches. Adv Polym Technol 32:21372

    Article  Google Scholar 

  20. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Edge-functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polym Int 63:1912–1923

    Article  CAS  Google Scholar 

  21. Ganjeh-Anzabi P, Haddadi-Asl V, Salami-Kalajahi M, Abdollahi M (2013) Kinetic investigation of the reversible addition-fragmentation chain transfer polymerization of 1,3-butadiene. J Polym Res 20:248

    Article  Google Scholar 

  22. Esfand R, Tomalia DA (2001) DLaboratory synthesis of poly(amidoamine)(PAMAM) dendrimers. In: Frechet JMJ, Tomalia DA (eds) Dendrimers and other Dendritic Polymers, chap 25, John Wiley & Sons Ltd, New York, pp 587–604

  23. Charles S, Vasanthan N, Kwon D, Sekosan G, Ghosh S (2012) Surface modification of poly(amidoamine) (PAMAM) dendrimer as antimicrobial agents. Tetrahedron Lett 53:6670–6675

    Article  CAS  Google Scholar 

  24. Amirshaqaqi N, Salami-Kalajahi M, Mahdavian M (2014) Investigation of corrosion behavior of aluminum flakes coated by polymeric nanolayer: effect of polymer type. Corros Sci 87:392–396

    Article  CAS  Google Scholar 

  25. Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Roghani-Mamaqani H, Najafi M (2013) Effect of loading and surface modification of nanoparticles on the properties of PMMA/silica nanocomposites prepared via in situ free radical polymerization. Int J Polym Mater Polym Biomater 62:336–344

    Article  CAS  Google Scholar 

  26. Sobani M, Haddadi-Asl V, Mirshafiei SA, Salami-Kalajahi M, Roghani-Mamaqani H, Khezri K (2014) A kinetics study on the in situ reversible addition-fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Des Monomers Polym 17:245–254

    Article  CAS  Google Scholar 

  27. Stechemesser S, Eimer W (1997) Solvent-dependent swelling of poly(amido amine) starburst dendrimers. Macromolecules 30:2204–2206

    Article  CAS  Google Scholar 

  28. Choi JS, Nam K, Park J-Y, Kim J-B, Lee J-K, Park J-S (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release 99:445–456

    Article  CAS  Google Scholar 

  29. Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H (2007) Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug Chem 18:2054–2060

    Article  CAS  Google Scholar 

  30. Xu X-D, Chen C-S, Wang Z-C, Wang G-R, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) “Click” chemistry for in situ formation of thermoresponsive P(NIPAAm-co-HEMA)-based hydrogels. J Polym Sci Polym Chem 46:5263–5277

    Article  CAS  Google Scholar 

  31. Weaver JVM, Bannister I, Robinson KL, Bories-Azeau X, Armes SP, Smallridge M, McKenna P (2004) Stimulus-responsive water-soluble polymers based on 2-hydroxyethyl methacrylate. Macromolecules 37:2395–2403

    Article  CAS  Google Scholar 

  32. Mishra V, Gupta U, Jain NK (2010) Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes. Pharmazie 65:891–895

    CAS  Google Scholar 

  33. Kesharwani P, Tekade RK, Gajbhiye V, Jain K, Jain NK (2011) Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers a comparison. Nanomedicine 7:295–304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Salami-Kalajahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaei, M., Salami-Kalajahi, M. Synthesis of poly(2-hydroxyethyl methacrylate)-grafted poly(aminoamide) dendrimers as polymeric nanostructures. Colloid Polym Sci 293, 1553–1559 (2015). https://doi.org/10.1007/s00396-015-3559-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3559-y

Keywords

Navigation