Skip to main content
Log in

Catharanthus roseus leaf extract-synthesized chitosan nanoparticles for controlled in vitro release of chloramphenicol and ketoconazole

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report the size-controlled chitosan nanoparticles synthesized by Catharanthus roseus leaf extract-mediated cross-linking of chitosan. Optimization of pH, ratio of chitosan to leaf filtrate concentration, and cross-linking time was performed for designing factorial synthetic strategy, which revealed minimum diameter (45 nm) of chitosan nanoparticles at pH 3 by employing chitosan/leaf extract in the ratio 3:1. The biogenically synthesized chitosan nanoparticles were further explored for encapsulation and controlled release of ketoconazole and chloramphenicol. The resulting drug-loaded chitosan nanoparticles showed size-dependent drug entrapment efficiency of 82.88 and 78.96 % with drug-loading capacity of 41.44 and 39.48 % for chloramphenicol and ketoconazole, respectively. The cumulative in vitro drug release up to 12 h was achieved which suggests enhanced efficacy of green synthesized chitosan nanoparticles for therapeutic and drug delivery applications. So far, there is no report concerning biogenic synthesis of chitosan nanoparticles; hence, it is being reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahapatro A, Singh D (2011) Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. J Nanobiotech 9:55

    Article  CAS  Google Scholar 

  2. Datta PK, Datta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    Google Scholar 

  3. Song H, Su C, Cui W, Zhu B, Liu L, Chen Z, Zhao L (2013) Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. Biomed Res Int. 2013:Article ID 723158. DOI: 10.1155/2013/7231

  4. Bhatta RS, Chandasanab H, Chhonker YS, Rathi C, Kumar D, Mitra K, Shukla PK (2012) Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharma 432(1–2):105–112

    Article  CAS  Google Scholar 

  5. Harde H, Agrawal AK, Jain S (2014) Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine. doi:10.2217/nnm.13.225

    Google Scholar 

  6. Alex SM, Rekha MR, Sharma CP (2011) Spermine grafted galactosylated chitosan for improved nanoparticle mediated gene delivery. Int J Pharm 410(1–2):125–137

    Article  CAS  Google Scholar 

  7. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18

    Article  CAS  Google Scholar 

  8. Choudhari YM, Detane SV, Kulthe SS, Godhani CC, Inamdar NN, Shirolikar SM, Borde LC, Mourya VK (2012) Low molecular weight palmitoyl chitosan: synthesis, characterization and nanoparticle preparation. Adv Mater Lett 3(6):487–492

    Google Scholar 

  9. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573

    Article  CAS  Google Scholar 

  10. Kumari A, Kumar V, Yadav SK (2012) Plant extract synthesised PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS One 7(7):e41230

    Article  CAS  Google Scholar 

  11. Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Rel 82:105–114

    Article  CAS  Google Scholar 

  12. Gupta A, Bonde SR, Gaikwad S, Ingle A, Gade AK, Rai M (2013) Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotech. doi:10.1049/iet-nbt.2013.0015

    Google Scholar 

  13. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra A, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  14. Bhanu Prakash M, Paul S (2012) Green synthesis of silver nanoparticles using Vinca roseus leaf extract and evaluation of their antimicrobial activities. Int J Appl Biol Pharma Technol 3(4):105–111

    Google Scholar 

  15. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  Google Scholar 

  16. Malabadi R, Chalannavar R, Meti N, Mulgund G, Nataraj K, Vijayakumar S (2012) Synthesis of antimicrobial silver nanoparticles by callus cultures and in vitro delivered plants of Catharanthus roseus. Res Pharma 2(6):18–31

    CAS  Google Scholar 

  17. Das Neves J, Bahia M, Amiji MM, Sarmento B (2011) Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv 8:1085–1104

    Article  CAS  Google Scholar 

  18. Luppi B, Bigucci F, Cerchiara T, Zecchi V (2010) Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv 7:811–828

    Article  CAS  Google Scholar 

  19. Gupta J, Prabhakaran N, Gupta R, Govind M (2011) Nanoparticles formulation using counter-ion induced gelification technique: in vitro chloramphenicol release. Int J Pharm Pharm Sci 3(3):66–70

    CAS  Google Scholar 

  20. Harris KA, Veinberg V, Bok RA, Kakeuda M, Small EJ (2002) Low dose ketoconazole with replacement doses of hydrocortisone in patients with progressive androgen independent prostate cancer. J Urol 168(2):542–545

    Article  CAS  Google Scholar 

  21. Dastagani A, Farahani EV, Imani M (2008) Preparation of chitosan nanoparticles loaded by dexamethasone sodium phosphate. Iran J Pharm Sci 4(2):111–114

    Google Scholar 

  22. Mattu C, Li R, Ciardelli G (2013) Chitosan nanoparticles as therapeutic protein nanocarriers: The effect of ph on particle formation and encapsulation efficiency. Polym Compos 34(9):1538–1545

    Article  CAS  Google Scholar 

  23. Seda Tigli Aydin R, Pulat M (2012) 5-Fluorouracil encapsulated chitosan nanoparticles for ph-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. Article ID 313961. doi:10.1155/2012/313961

  24. Gan Q, Wang T, Cochrane C, McCarron P (2005) Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B 44(2–3):65–73

    Article  CAS  Google Scholar 

  25. Shivshankar S, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  Google Scholar 

  26. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104. doi:10.1088/0957-4484/18/10/105104

    Article  Google Scholar 

  27. Raut RW, Ansari SMH, Malghe YS, Nikam BT, Kashid SB (2013) Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Adv Mat Lett 4(8):650–654

    CAS  Google Scholar 

  28. Zu Y, Zhang Y, Zhao X, Zhang Q, Liu Y, Jiang R (2009) Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folate-conjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int J Nanomedicine 4:321–333

    Article  CAS  Google Scholar 

  29. Modi J, Joshi G, Sawant K (2013) Chitosan based mucoadhesive nanoparticles of ketoconazole for bioavailability enhancement: formulation, optimization, in vitro and ex vivo evaluation. Drug Dev Ind Pharm 39(4):540–547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Department of Science and Technology for providing INSPIRE fellowship and project under “Nano mission Programme” and UGC, New Delhi for financial assistance under SAP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaonkar, D., Gaikwad, S. & Rai, M. Catharanthus roseus leaf extract-synthesized chitosan nanoparticles for controlled in vitro release of chloramphenicol and ketoconazole. Colloid Polym Sci 293, 1465–1473 (2015). https://doi.org/10.1007/s00396-015-3538-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3538-3

Keywords

Navigation