Skip to main content
Log in

Environmentally friendly functionalization of multiwalled carbon nanotube using ascorbic acid and efficient dispersion in chiral poly(ester-imide) containing 4,4′-thiobis(2-tert-butyl-5-methylphenol) moiety: thermal and morphological studies

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Carboxylated multiwalled carbon nanotubes (MWCNTs) were functionalized with ascorbic acid under microwave irradiation conditions as a simple and efficient method and dispersed in a chial poly(ester-imide) (PEI) matrix using solution blending technique. Optically active PEI was prepared by a step-growth polymerization of amino acid-based diacid (3) with 4,4′-thiobis (2-tert-butyl-5-methylphenol) (4) promoted by tosyl chloride in pyridine and N,N-dimethyl formamide solution. The nanocomposites (NCs) containing different loadings of functionalized MWCNTs (5, 10, 15 wt%) were produced and characterized regarding to chemical structure, morphological, and thermal properties by X-ray diffraction, FT-IR spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The TGA results showed that the introduction of modified MWCNTs improved the thermal stability of NCs compared to the neat PEI. TEM and FE-SEM images of the NCs revealed that the functionalized MWCNTs were dispersed uniformly and strongly interacted with the surrounding PEI matrix. The overview of these results is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hong J, Lee J, Hong CK, Shim SE (2010) Improvement of thermal conductivity of poly(dimethyl siloxane) using silica-coated multi-walled carbon nanotube. J Therm Anal Calorim 101:297–302

    Article  CAS  Google Scholar 

  2. Shabanian M, Faghihi K, Raeisi A, Varvanifarahani M, Khonakdar HA, Wagenknecht U (2014) New poly(ether-imide)/MWCNT nanocomposite. J Therm Anal Calorim 117:293–299

    Article  CAS  Google Scholar 

  3. Tahermansouri H, Biazar E (2013) Functionalization of carboxylated multi-wall carbon nanotubes with 3,5-diphenyl pyrazole and an investigation of their toxicity. New Carbon Mater 28:199–207

    Article  CAS  Google Scholar 

  4. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  5. Ávila-orta CA, Raudry-lópez CE, Dávila-rodríguez MV et al (2013) Morphology, thermal stability, and electrical conductivity of polymer nanocomposites of isotactic polypropylene/multi-walled carbon nanotubes. Int J Polym Mater 62:635–641

    Article  Google Scholar 

  6. Mallakpour S, Zadehnazari A (2014) A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide–imide) composites. J Solid State Chem 211:136–145

    Article  CAS  Google Scholar 

  7. Mallakpour S, Zadehnazari A (2013) Synthesize procedures, mechanical and thermal properties of thiazole bearing poly(amid-imide) composite thin films containing multiwalled carbon nanotubes. Colloid Polym Sci 291:1525–1534

    Article  CAS  Google Scholar 

  8. Mallakpour S, Zadehnazari A (2013) The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide–imide) composites containing a pendant dopamine moiety. Carbon 56:27–37

    Article  CAS  Google Scholar 

  9. >Mallakpour S, Zadehnazari A (2012) Chiral poly(amide-imide)/carbon nanotube bionanocomposites containing hydroxyl pendant groups and L-phenylalanine amino acid: synthesis, preparation of thin films, and thermomechanical behavior. Soft Matter 11:494–502

    Article  Google Scholar 

  10. Mallakpour S, Soltanian S (2014) Functionalized multi-wall carbon nanotube reinforced poly(ester-imide) bionanocomposites containing L-leucine amino acid units. J Polym Res 21:335–342

    Article  Google Scholar 

  11. Taheri S, Nakhlband E, Nazockdast H (2013) Microstructure and multiwall carbon nanotube partitioning in polycarbonate/acrylonitrile-butadiene-styrene/multiwall carbon nanotube nanocomposites. Polym Plast Technol Eng 52:300–309

    Article  CAS  Google Scholar 

  12. Meng L, Fu C, Lu Q (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19:801–810

    Article  CAS  Google Scholar 

  13. Cui LJ, Wang YB, Xiu WJ et al (2013) Effect of functionalization of multi-walled carbon nanotube on the curing behavior and mechanical property of multi-walled carbon nanotube/epoxy composites. Mater Des 49:279–284

    Article  CAS  Google Scholar 

  14. Kathi J, Rhee KY, Lee JH (2009) Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Composites A 40:800–809

    Article  Google Scholar 

  15. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  16. Mahmood N, Islam M, Hameed A, Saeed S (2013) Polyamide 6/multiwalled carbon nanotubes nanocomposites with modified morphology and thermal properties. Polymers 5:1380–1391

    Article  Google Scholar 

  17. Nakano T (2001) Optically active synthetic polymers as chiral stationary phases in HPLC. J Chromatogr A 906:205–225

    Article  CAS  Google Scholar 

  18. Mallakpour S, Zadehnazari A (2011) Advances in synthetic optically active condensation polymers—a review. Express Polym Lett 5:142–181

    Article  CAS  Google Scholar 

  19. Feng L, Hu J, Liu Z, Zhao F, Liu G (2007) Preparation and properties of optically active poly(N-methacryloyl L-leucine methyl ester). Polymer 48:3616–3623

    Article  CAS  Google Scholar 

  20. Hamciuc C, Vlad-Bubulac T, Petreus O, Lisa G (2008) Synthesis and characterization of new aromatic polyesters and poly(ester-imide)s containing phosphorous cyclic bulky groups. Polym Bull 60:657–664

    Article  CAS  Google Scholar 

  21. Mallakpour S, Zeraatpisheh F (2013) Novel chiral and organosoluble nanostructure poly(ester–imide)s containing N,N’-(3,3′,4,4′-benzophenonetetracarboxylic)-3,3′,4,4′-diimido-bis-(L-tyrosine methyl ester) as a new amino acid based diol: production, morphology, and thermal properties. Des Monomers Polym 16:488–497

    Article  CAS  Google Scholar 

  22. Mallakpour S, Zeraatpisheh F (2011) Construction and characterization of bionanocomposites based on optically active poly(ester-imide) containing L-amino acids using nano-ZnO surface-coupled by γ-methacryloxypropyl-trimethoxysilane. Des Monomers Polym 14:487–498

    Article  CAS  Google Scholar 

  23. Mallakpour S, Shahmohammadi MH (2004) Synthesis and characterization of novel optically active poly(imide–urethane)s derived from N,N′-(pyromellitoyl)-bis-(L-leucine) diisocyanate and aromatic diols. Polym Int 53:184–190

    Article  CAS  Google Scholar 

  24. Mallakpour S, Soltanian S, Sabzalian MR (2011) Fabrication and in vitro degradation study of novel optically active polymers derived from amino acid containing diacids and 4,4′-thiobis (2-tert-butyl-5-methylphenol). J Polym Res 18:1679–1686

    Article  CAS  Google Scholar 

  25. Nobile MR (2012) Carbon nanotube polymer composites. In: Nicolais L, Borzacchiello A (eds). Wiley encyclopedia of composites. New Jersey, USA pp. 1–20

  26. Abuilaiwi FA, Laoui T, Al-Harthi M, Ateh MA (2010) Modification and functionalization of multiwalled carbon nanotube (MWCNT) via Fischer esterification. Arab J Sci Eng 35:37–48

    CAS  Google Scholar 

  27. Cruz Santos JC, Mansur AAP, Ciminelli VST, Mansur HS (2014) Nanocomposites of poly(vinyl alcohol)/functionalized-multiwall carbon nanotubes conjugated with glucose oxidase for potential application as scaffolds in skin wound healing. Int J Polym Mater 63:185–196

    Article  Google Scholar 

  28. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier Scientific, New York

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Research Affairs Division Isfahan University of Technology (IUT), Isfahan, for partial financial support. Further financial support from National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC), and Center of Excellence in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Soltanian, S. Environmentally friendly functionalization of multiwalled carbon nanotube using ascorbic acid and efficient dispersion in chiral poly(ester-imide) containing 4,4′-thiobis(2-tert-butyl-5-methylphenol) moiety: thermal and morphological studies. Colloid Polym Sci 293, 1141–1149 (2015). https://doi.org/10.1007/s00396-015-3499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3499-6

Keywords

Navigation