Skip to main content
Log in

Development and characterization of composites based on polyaniline and modified microcrystalline cellulose with anhydride maleic as platforms for electrochemical trials

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, a new material, i.e., composite PANI(MAC) based on polyaniline (PANI) and microcrystalline cellulose modified with maleic anhydride (MAC), was generated in the form of thin films immobilized on indium tin oxide (ITO) slides using a layer-by-layer self-assembly technique. For comparison, thin films of PANI in the absence of MAC were also prepared under the same conditions as those for PANI(MAC). Characterization of PANI(MAC) by ultraviolet-visible (UV-vis) spectroscopy showed that MAC acts as an organic acid that promotes secondary doping of PANI, as evidenced by the appearance of an absorption broadband at 900 nm. Cyclic voltammetry (CV) measurements revealed this same effect: the current density values obtained for the PANI(MAC) film were higher than those obtained for PANI in the absence of MAC. Studies on the behavior of the PANI and PANI(MAC) films at different pH values revealed that the PANI(MAC) films required a higher pH to generate electroactivity, which was not required for the reference films. Stability testing of the PANI(MAC) films revealed that their electrochemical profiles did not change after 3 months; this indicates that the presence of cellulose in the film did not accelerate degradation of the polyaniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Minassian-saraga LT (1994) Thin films including layers: terminology in relation to their preparation and characterization. Pure Appl Chem 68(8):1667–1738

    Google Scholar 

  2. Chandra PK, Sobral PJA (2000) Cálculo de propriedades viscoelásticas de biofilmes: aplicação de três modelos. Ciênc. Tecnol Aliment 20:250–256

    Article  Google Scholar 

  3. Petri DFS (2002) Characterization of spin-coated polymer films. J Braz Chem Soc 13(5):695–699

    Article  CAS  Google Scholar 

  4. Chwastek M, Weszka J, Jurusik J, Hajduk B, Jarka P (2011) Influence of technological conditions on optical properties and morphology of spin-coated PPI thin films. Archives of Materials Science and Engineering (48)69-76

  5. Mattoso LHC, Ferreira M, Oliveira ON Jr (1994) Filmes Langmuir–Blodgett de Polímeros Condutores. Ciência e Tecnologia, Polímeros, pp 23–34

    Google Scholar 

  6. Shi Z, Philips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5(8):3194–3201

    Article  CAS  Google Scholar 

  7. Zhao C, Lin H, Zhang Q, Na H (2010) Layer-by-layer self-assembly of polyaniline on sulfonated poly(arylene ether ketone) membrane with high proton conductivity and low methanol crossover. Int J Hydrog Energy 35:10482–10488

    Article  CAS  Google Scholar 

  8. Knauss LA, Harshavardhan KS, Christen HM, Zhang HY, He XH, Shih YH, Grabowski KS, Knies DL (1998) Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics. Appl Phys Lett 73(26):3806–3808

    Article  CAS  Google Scholar 

  9. Ramanavičius A, Ramanavičienė A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 51(27):6025–6037

    Article  Google Scholar 

  10. Crespilho FN, Iost RM, Travain SA, Oliveira ON Jr, Zucolotto V (2009) Enzyme immobilization on Ag nanoparticles/ polyaniline nanocomposites. Biosens Bioelectron 24(10):3073–3077

    Article  CAS  Google Scholar 

  11. Lin CM, Lien WC, Felmetsger VV, Hopcroft MA, Senesky DG, Pisano AP (2010) AIN thin films grown on epitaxial 3C–SiC (100) for piezoelectric resonant devices. Appl Phys Lett 97:141907

    Article  Google Scholar 

  12. Boileau A, Capon F, Barrat S, Laffez P, Pierson JF (2012) Thermochromic effect at room temperature of Sm0.5Ca0.5MnO3 thin films. J Appl Phys 111(11):113517

    Article  Google Scholar 

  13. Paterno LG, Mattoso LHC, Oliveira ON Jr (2001) Filmes Poliméricos Ultrafinos Produzidos pela Técnica de Automontagem: preparação, propriedades e aplicação. Quim Nova 24(2):228–235

    Article  CAS  Google Scholar 

  14. Villiers MM, Otto DP, Strydom SJ, Lvov YM (2011) Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev 63(9):701–715

    Article  Google Scholar 

  15. Santos AC, Luz RAS, Ferreira LGF, Júnior JRS, Silva WC, Crespilho FN (2010) Organização Supramolecular da Ftalocianina de Cobalto(II) e Seu Efeito na Oxidação do Aminoácido Cisteína. Quim Nova 33(3):539–546

    Article  CAS  Google Scholar 

  16. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 2010:831–835

    Article  Google Scholar 

  17. Li Y, Wang X, Sun J (2012) Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc 41:5998–6009

    Article  CAS  Google Scholar 

  18. Eckle M, Decher G (2001) Tuning the performance of layer-by-layer assembled organic light emitting diodes by controlling the position of isolating clay barrier sheets. Nano Lett 1(1):45–49

    Article  CAS  Google Scholar 

  19. Pron A, Nicolau Y, Genoud F, Nechtshein M (1997) Flexible, highly transparent, and conductive polyaniline-cellulose acetate composite films. J App Polym Sci 63:971–977

    Article  CAS  Google Scholar 

  20. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers. Synth Met 125:11–22

    Article  Google Scholar 

  21. MacDiarmid AG, Epstein AJ (1994) The concept of secondary doping as applied to polyaniline. Synth Met 65:103–116

    Article  CAS  Google Scholar 

  22. Sakamoto H, Itow M, Kachi N, Kawahara T, Mizoguchi K, Ishii H, Miyahara T, Yoshioka K, Masubuchi S, Kazama S, Matsushita T, Sekiyama A, Suga S (1999) Electronic states of conducting polymers studied by UPS. J Electron Spectrosc Relat Phenom 92:159–164

    Article  Google Scholar 

  23. Mattoso LHC (1996) Polianilina: Síntese, Estrutura e Propriedades. Quim Nova 19:388–397

    CAS  Google Scholar 

  24. Abalyaeva VV, Efimov ON (2011) Synthesis and electrochemical behavior of polyaniline doped by electroactive anions. Russiar J Electrochem 47(11):1299–1306

    Article  CAS  Google Scholar 

  25. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material Angew. Chem. Int. pp 3358

  26. Sheykhnazari S, Tabarsa T, Ashori A, Shakeri A, Golalipour M (2011) Bacterial synthesized cellulose nanofibers; effects of growth times and culture mediums on the structural characteristics. Carbohydr Polym 86:1187–1191

    Article  CAS  Google Scholar 

  27. Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009) Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Quim Nova 32(3):661–671

    Article  CAS  Google Scholar 

  28. Zhou Y, Jin Q, Hu X, Zhang Q, Ma T (2012) Heavy metal ions and organic dyes removal from water by cellulose modified with maleic anhydride. J Mater Sci 47:5019–5029

    Article  CAS  Google Scholar 

  29. Melo CP, Da Silva EC, Santana SAA, Airioldi C (2009) Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface. Colloids Surf A Physicochem Eng Asp 346:138–145

    Article  Google Scholar 

  30. Devendrappa H, Rao UVS, Prasad MVNA (2006) Study of DC conductivity and battery application of polyethylene oxide/polyaniline and its composites. J Power Sources 155:368–374

    Article  CAS  Google Scholar 

  31. Brozová L, Holler P, Kovárová J, Stejskal J, Trchová M (2008) The stability of polyaniline in strongly alkaline or acidic aqueous media. Polym Degrad Stab 93:592–600

    Article  Google Scholar 

  32. Kern W (1984) Purifying Si and SiO2 surfaces with hydrogen peroxide. Semicond Int 7(4):94–99

    Google Scholar 

  33. Pruneanu S, Veress E, Marian I, Oniciu L (1999) Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy. J Mater Sci 34:2733–2739

    Article  CAS  Google Scholar 

  34. Moraes SR, Huerta VD, Motheo AJ (2004) Characteristics of polyaniline synthesized in phosphate buffer solution. Eur Polym J 40:2033–2041

    Article  CAS  Google Scholar 

  35. Gribkova OL, Nekrasov AA, Miroslava T, Ivanov VF, Vadim IS, Razova AB, Tverskoy VA, Vannikov AV (2011) Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. Polymer 52(12):2474–2484

    Article  CAS  Google Scholar 

  36. Mantovani GL, MacDiarmid AG, Mattoso LHC (1997) Secondary doping in elastomeric polyaniline blends. Synth Met 84:73–74

    Article  CAS  Google Scholar 

  37. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  CAS  Google Scholar 

  38. Huang WS, Humphrey BD, Macdiarmid AG (1986) Polyaniline, a novel conducting polymer—morphology and chemistry of its oxidation and reduction in aqueous-electrolytes. Journal of the Chemical Society, Faraday

Download references

Acknowledgments

This study received financial support from CNPq and CAPES Network Nanobiomed, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Eiras.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 52 kb)

ESM 2

(DOCX 71 kb)

ESM 3

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.R.T., de O. Farias, E.A., Filho, E.C.S. et al. Development and characterization of composites based on polyaniline and modified microcrystalline cellulose with anhydride maleic as platforms for electrochemical trials. Colloid Polym Sci 293, 1049–1058 (2015). https://doi.org/10.1007/s00396-014-3489-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3489-0

Keywords

Navigation