Skip to main content
Log in

Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Temperature-induced collapse of hydrogels of interpenetrating polymer networks (IPNs) poly(N-vinylcaprolactam)/poly(N-isopropylacrylamide) (PVCL/PNIPAm) and poly(N-isopropylmethacrylamide) (PNIPMAm)/PNIPAm, where both components are thermoresponsive, was studied by combination of 1H nuclear magnetic resonance (NMR) spectroscopy, small-angle neutron scattering (SANS), differential scanning calorimetry (DSC), and dynamic mechanical measurements. Behavior of studied hydrogels (one or two transitions) was found to depend on the ratio of both IPN components. For hydrogels of IPNs containing around 50 mol% of PNIPAm monomer units, separate transitions were revealed for both components. From SANS curves, it follows that compact three-dimensional multi-chain globules are formed in PNIPMAm/PNIPAm and PVCL/PNIPAm IPN hydrogels at temperatures above the phase transition, with a gyration radius of 14–28 nm. A certain portion of spatially restricted bound water (HDO) was established for all the studied IPNs at temperature above the volume phase transition from measurements of 1H NMR spectra, spin-spin relaxation times (T 2), and diffusion coefficients (D) of HDO. Slow exchange regime between bound and free water was revealed. Spin–spin relaxation times (T 2) and diffusion coefficients (D) as obtained for the bound HDO are up to 2 orders of magnitude smaller in comparison with “free” HDO. Higher content of bound water as found for collapsed hydrogels of IPN PVCL/PNIPAm in comparison with PNIPMAm/PNIPAm hydrogels is in accordance with swelling experiments and lower values of the shear mechanical modulus; this shows the decisive role of bound water in this respect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  2. Aseyev VO, Tenhu H, Winnik FM (2006) Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. Adv Polym Sci 196:1–85

    Article  CAS  Google Scholar 

  3. Aseyev VO, Tenhu H, Winnik FM (2011) Non-ionic thermoresponsive polymers in water. Adv Polym Sci 242:29–89

    Article  CAS  Google Scholar 

  4. (1993) Responsive gels: volume transitions I, II. Dušek K. (ed) Adv Polym Sci 109 and 110

  5. Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823

    Article  CAS  Google Scholar 

  6. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  7. Uhrich KE (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    Article  CAS  Google Scholar 

  8. Park C, Orozco-Avila I (1992) Concentrating cellulases from fermented broth using a temperature-sensitive hydrogel. Biotechnol Prog 8:521–526

    Article  CAS  Google Scholar 

  9. Kajiwara K, Ross-Murphy SB (1992) Synthetic gels on the move. Nature 355:208–209

    Article  Google Scholar 

  10. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  CAS  Google Scholar 

  11. von Recum HA, Kikuchi A, Yamato M, Sakurai Y, Okano T, Kim SW (1999) Growth factors and matrix molecules preserve cell function on thermally responsive culture surfaces. Tissue Eng 5:251–265

    Article  Google Scholar 

  12. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769

    Article  CAS  Google Scholar 

  13. Muniz E, Geuskens G (2001) Polyacrylamide hydrogels and semi-interpenetrating networks (IPNs) with poly(N-isopropylacrylamide): mechanical properties by measure of compressive elastic modulus. Macromolecules 34:4480–4484

    Article  CAS  Google Scholar 

  14. Shibayama M, Norisuye T, Nomura S (1996) Thermal properties of copolymer gels containing N-isopropylacrylamide. Macromolecules 29:8746–8750

    Article  CAS  Google Scholar 

  15. Wu C, Zhou SQ (1996) Internal motions of both poly(N-isopropylacrylamide) linear chains and spherical microgel particles in water. Macromolecules 29:1574–1578

    Article  CAS  Google Scholar 

  16. Ohta H, Ando I, Fujishige S, Kubota K (1991) A 13C PST/MAS NMR-study of poly(N-isopropylacrylamide) in solution and in the gel phase. J Mol Struct 245:391–397

    Article  CAS  Google Scholar 

  17. Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethals E, Du Prez F (2000) Phase behaviour of poly(N-vinyl caprolactam) in water. Polymer 41:8597–8602

    Article  CAS  Google Scholar 

  18. Maeda Y, Nakamura T, Ikeda I (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water. Macromolecules 35:217–222

    Article  CAS  Google Scholar 

  19. Spěváček J, Dybal J, Starovoytova L, Zhigunov A, Sedláková Z (2012) Temperature-induced phase separation and hydration in poly(N-vinylcaprolactam) aqueous solutions: a study by NMR and IR spectroscopy, SAXS, and quantum-chemical calculations. Soft Matter 8:6110–6119

    Article  Google Scholar 

  20. Mikheeva LM, Grinberg NV, Mashkevich AY, Grinberg VY, Thanh LTM, Makhaeva EE, Khokhlov AR (1997) Microcalorimetric study of thermal cooperative transitions in poly(N-vinylcaprolactam) hydrogels. Macromolecules 30:2693–2699

    Article  CAS  Google Scholar 

  21. Spěváček J, Dybal J (2014) Temperature-induced phase separation and hydration in aqueous polymer solutions studied by NMR and IR spectroscopy: comparison of poly(N-vinylcaprolactam) and acrylamide-based polymers. Macromol Symp 336:39–46

    Article  Google Scholar 

  22. Sun S, Wu P (2011) Infrared spectroscopic insight into hydration behavior of poly(N-vinylcaprolactam) in water. J Phys Chem B 115:11609–11618

    Article  CAS  Google Scholar 

  23. Prashantha K, Pai KVK, Sherigara BS, Prasannakumar S (2001) Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): synthesis, chemical, mechanical and thermal properties. Bull Mater Sci 24:535–538

    Article  CAS  Google Scholar 

  24. Shin BC, Jhon MS, Lee HB, Yuk SH (1998) pH/temperature dependent phase transition of an interpenetrating polymer network: anomalous swelling behavior above lower critical solution temperature. Eur Polym J 34:1675–1681

    Article  CAS  Google Scholar 

  25. Kim SJ, Lee KJ, Kim IY, Lee YM, Kim SI (2003) Swelling kinetics of modified poly(vinyl alcohol) hydrogels. J Appl Polym Sci 90:3310–3313

    Article  CAS  Google Scholar 

  26. Kim SJ, Park SJ, Lee SM, Lee YM, Kim HC, Kim SI (2003) Electroactive characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). J Appl Polym Sci 89:890–894

    Article  CAS  Google Scholar 

  27. Kim SJ, Park SJ, Kim IY, Chung TD, Kim HC, Kim SI (2003) Thermal characteristics of interpenetrating polymer networks composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). J Appl Polym Sci 90:881–885

    Article  CAS  Google Scholar 

  28. Szilágyi A, Zrínyi M (2005) Temperature induced phase transition of interpenetrating polymer networks composed of poly(vinyl alcohol) and copolymers of N-isopropylacrylamide with acrylamide or 2-acrylamido-2-methylpropyl-sulfonic acid. Polymer 46:10011–10116

    Article  Google Scholar 

  29. Zhang J, Peppas NA (2000) Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107

    Article  CAS  Google Scholar 

  30. Starovoytova L, Spěváček J, Hanyková L, Ilavský M (2004) 1H NMR study of thermotropic phase transitions in D2O solutions of poly(N-isopropylmethacrylamide)/poly(vinyl methyl ether) mixtures. Polymer 45:5905–5911

    Article  CAS  Google Scholar 

  31. Starovoytova L, Spěváček J, Ilavský M (2005) 1H NMR study of temperature-induced phase transitions in D2O solutions of poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide) mixtures and random copolymers. Polymer 46:677–683

    Article  CAS  Google Scholar 

  32. Kouřilová H, Spěváček J, Hanyková L (2013) 1H NMR study of temperature-induced phase transitions in aqueous solutions of poly(N-isopropylmethacrylamide)/poly(N-vinylcaprolactam) mixtures. Polym Bull 70:221–235

    Article  Google Scholar 

  33. Šťastná J, Hanyková L, Sedláková Z, Valentová H, Spěváček J (2013) Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide). Colloid Polym Sci 291:2409–2417

    Article  Google Scholar 

  34. Hort EV, Grosser F, Schwartz A (1966) Ethylidene-bis-3(N-vinyl-2-pyrrolidone) and polymers thereof. US Pat 3294765

  35. Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR. Academic, New York, pp 27–29

    Google Scholar 

  36. Soloviev AG, Solovieva TM, Stadnik AV, Islamov AKh, Kuklin AI (2003) Programma dlja pervicnoj obrabotki spektrov malouglovovo rassejanija. Communication of JINR, P10-2003-86

  37. Kohlbrecher J, Bressler I (2014) Software package SASfit for fitting small-angle scattering curves. https://kur.web.psi.ch/sans1/SANSSoft/sasfit.html

  38. Shibayama M, Mizutani S, Nomura S (1996) Thermal properties of copolymer gels containing N-isopropylacrylamide. Macromolecules 29:2019–2024

    Article  CAS  Google Scholar 

  39. Schild HG, Tirrell DA (1990) Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J Phys Chem 94:4352–4356

    Article  CAS  Google Scholar 

  40. Laukkanen A, Valtola L, Winnik FM, Tenhu H (2004) Formation of colloidally stable phase separated poly(N-vinylcaprolactam) in water: a study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules 37:2268–2274

    Article  CAS  Google Scholar 

  41. Pleštil J, Ostanevich YM, Borbely S, Stejskal J, Ilavský M (1987) Phase transition in swollen gels. Polym Bull 17:465–472

    Article  Google Scholar 

  42. Sorensen CM, Wang GM (1999) Size distribution effect on the power law regime of the structure factor of fractal aggregates. Phys Rev E 60:7143–7148

    Article  CAS  Google Scholar 

  43. Kratky O, Porod G, Kahovec L (1951) Einige Neuerungen in der Technik und Auswertung von Röntgen-Kleinwinkelmessungen. Z Elektrochem 55:53–59

    CAS  Google Scholar 

  44. Guinier A (1939) La diffraction des rayons X aux tres petits angles; application a l’etude de phenomenes ultramicroscopiques. Ann Phys (Paris) 12:161–237

    CAS  Google Scholar 

  45. Lebedev V, Torok G, Cser L, Treimer W, Orlova DN, Sibilev AI (2003) Polymer hydration and microphase decomposition in poly(N-vinylcaprolactam)-water complex. J Appl Crystallogr 2003(36):967–969

    Article  Google Scholar 

  46. Spěváček J (2009) NMR investigations of phase transition in aqueous polymer solutions and gels. Curr Opin Colloid Interface Sci 14:184–191

    Article  Google Scholar 

  47. Spěváček J, Hanyková L (2005) 1H NMR study on the hydration during temperature-induced phase separation in concentrated poly(vinyl methyl ether)/D2O solutions. Macromolecules 38:9187–9191

    Article  Google Scholar 

  48. Hanyková L, Labuta J, Spěváček J (2006) NMR study of temperature-induced phase separation and polymer-solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer 47:6107–6116

    Article  Google Scholar 

  49. Spěváček J, Hanyková L, Labuta J (2011) Behavior of water during temperature-induced phase separation in poly(vinyl methyl ether) aqueous solutions. NMR and optical microscopy study. Macromolecules 44:2149–2153

    Article  Google Scholar 

  50. Hanyková L, Spěváček J, Ilavský M (2001) 1H NMR study of thermotropic phase transition of linear and crosslinked poly(vinyl methyl ether) in D2O. Polymer 42:8607–8612

    Article  Google Scholar 

  51. Díez-Peña E, Quijada-Garrido I, Barrales-Rienda JM, Wilhelm M, Spiess HW (2002) NMR studies of the structure and dynamics of polymers gels based on N-isopropylacrylamide (N-iPAAm) and methacrylic acid (MAA). Macromol Chem Phys 203:491–502

    Article  Google Scholar 

  52. Wang N, Ru G, Wang L, Feng J (2009) 1H MAS NMR studies of the phase separation of poly(N-isopropylacrylamide) gel in binary solvents. Langmuir 25:5898–5902

    Article  CAS  Google Scholar 

  53. Hofmann CH, Plamper FA, Scherzinger C, Hietala S, Richtering W (2013) Cononsolvency revisited: solvent entrapment by N-isopropylacrylamide and N,N-diethylacrylamide microgels in different water/methanol mixtures. Macromolecules 46:523–532

    Article  CAS  Google Scholar 

  54. Sierra-Martin B, Choi Y, Romero-Cano MS, Cosgrove T, Vincent B, Fernandez-Barbero A (2005) Microscopic signature of a microgel volume phase transition. Macromolecules 38:10782–10787

    Article  CAS  Google Scholar 

  55. Sierra-Martin B, Romero-Cano MS, Cosgrove T, Vincent B, Fernandez-Barbero A (2005) Solvent relaxation of swelling PNIPAM microgels by NMR. Colloids Surf A Physicochem Eng Asp 270–271:296–300

    Article  Google Scholar 

  56. Mirau PA (2004) A practical guide to understanding the NMR of polymers. Wiley, Hoboken, pp 24–27

    Google Scholar 

  57. Mills R (1973) Self-diffusion in normal and heavy water in the range 1–45 °C. J Phys Chem 77:685–688

    Article  CAS  Google Scholar 

  58. Djokpé E, Vogt W (2001) N-isopropylacrylamide and N-isopropylmethacrylamide: cloud points of mixtures and copolymers. Macromol Chem Phys 202:750–757

    Article  Google Scholar 

Download references

Acknowledgments

Support by the Czech Science Foundation (Project 13-23392S) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lenka Hanyková or Jiří Spěváček.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanyková, L., Spěváček, J., Radecki, M. et al. Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks. Colloid Polym Sci 293, 709–720 (2015). https://doi.org/10.1007/s00396-014-3455-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3455-x

Keywords

Navigation