Skip to main content
Log in

Heterophase polymerization: pressures, polymers, particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Following the swelling of single-polymer beads and the polymerization of single-monomer droplets are unconventional methods to study heterophase polymerizations. However, the focus on the behavior of single-colloidal entities allowed surprisingly a degree of abstraction which was unattainable so far with conventional investigation strategies. The experimental results revealed an unexpected behavior of polymerizing droplets and led to the discovery of the importance of the swelling pressure for any kind of heterophase polymerization process. The action of the swelling pressure is independent of any special design of the process and only requires the coexistence of monomer and polymer in confined reaction volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Höhne P, Krüger K, Tauer K (2013) Vapor phase composition and radical polymerization-how the gas phase influences the kinetics of heterophase polymerization. Colloid Polym Sci 291(3):483–500. doi:10.1007/s00396-012-2730-y

    Article  Google Scholar 

  2. Krüger K, Tauer K, Yagci Y, Moszner N (2011) Photoinitiated bulk and emulsion polymerization of styrene—evidence for photo-controlled radical polymerization. Macromolecules 44(24):9539–9549. doi:10.1021/Ma2021997

    Article  Google Scholar 

  3. Kim J-W, Larsen RJ, Weitz DA (2006) Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc 128(44):14374–14377. doi:10.1021/ja065032m

    Article  CAS  Google Scholar 

  4. Krüger K, Hernandez H, Tauer K (2014) Particle size-dependent effects in hydrophobically initiated emulsion polymerization. Macromol Theor Simul 23(3):125–135. doi:10.1002/mats.201300151

    Article  Google Scholar 

  5. Full Public Report (1998) Phosphine oxide, phenlybis (2,4,6-trimethylbenzoyl)- (NA/599). National Occupational Health and Safety Commission, Sydney, Australia

  6. Battino R, Clever HL (1966) Solubility of gases in liquids. Chem Rev 66(4):395

    Article  CAS  Google Scholar 

  7. Harkins WD (1947) A general theory of the mechanism of emulsion polymerization. J Am Chem Soc 69(6):1428. doi:10.1021/Ja01198a053

    Article  CAS  Google Scholar 

  8. van Herk A, Gilbert B (2005) Emulsion polymerisation. In: van Herk A (ed) Chemistry and technology of emulsion polymerisation. Blackwell Publishing Ltd, Oxford, pp 46–78

    Chapter  Google Scholar 

  9. Morton M, Kaizerman S, Altier MW (1954) Swelling of latex particles. J Colloid Sci Imp U Tok 9(4):300–312. doi:10.1016/0095-8522(54)90040-9

    Article  CAS  Google Scholar 

  10. Antonietti M, Kaspar H, Tauer K (1996) Swelling equilibrium of small polymer colloids: Influence of surface structure and a size-dependent depletion correction. Langmuir 12(26):6211–6217. doi:10.1021/La960159i

    Article  CAS  Google Scholar 

  11. Tauer K, Kaspar H, Antonietti M (2000) Equilibrium swelling of colloidal polymeric particles with water-insoluble organic solvents. Colloid Polym Sci 278(9):814–820. doi:10.1007/s003960000318

    Article  CAS  Google Scholar 

  12. Tauer K, Hernandez HF (2010) Molecular aspects of radical polymerizations—the propagation frequency. Macromol Rapid Commun 31(5):419–442. doi:10.1002/marc.20090060

    Article  CAS  Google Scholar 

  13. Kim JW, Larsen RJ, Weitz DA (2007) Uniform nonspherical colloidal particles with tunable shapes. Adv Mater 19(15):2005. doi:10.1002/adma.200602345

    Article  CAS  Google Scholar 

  14. Mock EB, De Bruyn H, Hawkett BS, Gilbert RG, Zukoski CF (2006) Synthesis of anisotropic nanoparticles by seeded emulsion polymerization. Langmuir 22(9):4037–4043. doi:10.1021/La060003a

    Article  CAS  Google Scholar 

  15. Sheu HR, Elaasser MS, Vanderhoff JW (1990) Uniform nonspherical latex-particles as model interpenetrating polymer networks. J Polym Sci A Polym Chem 28(3):653–667. doi:10.1002/pola.1990.080280315

    Article  CAS  Google Scholar 

  16. Sheu HR, Elaasser MS, Vanderhoff JW (1990) Phase-separation in polystyrene latex interpenetrating polymer networks. J Polym Sci A Polym Chem 28(3):629–651. doi:10.1002/pola.1990.080280314

    Article  CAS  Google Scholar 

  17. Skjeltorp AT, Ugelstad J, Ellingsen T (1986) Preparation of nonspherical, monodisperse polymer particles and their self-organization. J Colloid Interface Sci 113(2):577–582. doi:10.1016/0021-9797(86)90190-6

    Article  CAS  Google Scholar 

  18. Rehage G (1960) Zur Thermodynamik der Quellung. Rheinisch-Westfälischen Technischen Universität, Aachen

    Google Scholar 

  19. Laaksonen A, Talanquer V, Oxtoby DW (1995) Nucleation—measurements, theory, and atmospheric applications. Annu Rev Phys Chem 46:489–524

    Article  CAS  Google Scholar 

  20. Lee S, Rudin A (1992) Synthesis of core shell latexes by redox initiation at ambient-temperatures. J Polym Sci A Polym Chem 30(10):2211–2216. doi:10.1002/pola.1992.080301016

    Article  CAS  Google Scholar 

  21. Thompson DW (1915) Galileo and the principle of similitude. Nature 95:426–427. doi:10.1038/095426a0

    Article  Google Scholar 

  22. Assis AKT (2004) The principle of physical proportions. Ann Fonadtion Louis Broglie 29(1–2):149–171

    Google Scholar 

  23. Tolman RC (1914) The principle of similitude. Phys Rev 3(4):244–255. doi:10.1103/Physrev.3.244

    Article  Google Scholar 

  24. Klevens HB (1950) Solubilization. Chem Rev 47(1):1–74. doi:10.1021/cr60146a001

    Article  CAS  Google Scholar 

  25. Honda H, Kimura M, Honda F, Matsuno T, Koishi M (1994) Preparation of monolayer particle coated powder by the dry impact blending process utilizing mechanochemical treatment. Colloids Surf A 82(2):117–128. doi:10.1016/0927-7757(93)02620-T

    Article  CAS  Google Scholar 

  26. Kawahashi N, Matijevic E (1990) Preparation and properties of uniform coated colloidal particles. 5. Yttrium basic carbonate on polystyrene latex. J Colloid Interface Sci 138(2):534–542. doi:10.1016/0021-9797(90)90235-G

    Article  CAS  Google Scholar 

  27. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298(5595):1006–1009. doi:10.1126/science.1074868

    Article  CAS  Google Scholar 

  28. Velev OD, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates.2. Ball-like and composite aggregates. Langmuir 12(10):2385–2391. doi:10.1021/La950679y

    Article  CAS  Google Scholar 

  29. Velev OD, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates.1. Microstructured hollow spheres. Langmuir 12(10):2374–2384. doi:10.1021/La9506786

    Article  CAS  Google Scholar 

  30. Borchard W (1966) Quellungsdruckmessungen an polystyrolgelen. Rheinisch-Westfalische Technische Hochschule, Aachen

    Google Scholar 

  31. Kabalnov A (2001) Ostwald ripening and related phenomena. J Dispers Sci Technol 22(1):1–12. doi:10.1081/Dis-100102675

    Article  CAS  Google Scholar 

  32. Kabalnov AS, Pertzov AV, Shchukin ED (1987) Ostwald ripening in 2-component disperse phase systems—application to emulsion stability. Colloids Surf 24(1):19–32. doi:10.1016/0166-6622(87)80258-5

    Article  CAS  Google Scholar 

  33. Webster AJ, Cates ME (1998) Stabilization of emulsions by trapped species. Langmuir 14(8):2068–2079. doi:10.1021/La9712597

    Article  CAS  Google Scholar 

  34. Posnjak E (1912) Über den Quellungsdruck. Kolloidchem Beih III 12:417–454

    Article  Google Scholar 

  35. Pons JL (2005) Emerging actuator technologies: a micromechatronic approach. John Wiley & Sons Ltd, New York

    Book  Google Scholar 

Download references

Acknowledgments

P. T. and S. N. acknowledge a scholarship from The Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph. D. Program (Grant No. PHD/0190/2553) and P.H. a fellowship and financial support within the DFG priority program SPP1420. The authors are thankful to Mrs. Rona Pitschke and Heike Runge for making all SEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Tauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krüger, K., Wei, C., Nuasaen, S. et al. Heterophase polymerization: pressures, polymers, particles. Colloid Polym Sci 293, 761–776 (2015). https://doi.org/10.1007/s00396-014-3448-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3448-9

Keywords

Navigation