Skip to main content
Log in

One-step synthesis of monodisperse gold dendrite@polypyrrole core-shell nanoparticles and their enhanced catalytic durability

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Colloidal noble metal-conducting polymer core–shell nanoparticles show promising applications in a wide diversity of areas, but it remains a great challenge to develop a convenient synthetic method allowing strict control over their size/dimension and facile modulation of their nanostructures. In this work, we report the synthesis of monodisperse gold dendrite@polypyrrole (AuD@PPy) core–shell nanoparticles with an eco-friendly one-step solution reaction by triggering oxidative polymerization of pyrrole with tetrachloroauric acid. As-prepared AuD@PPy nanoparticle is composed of a gold dendrite core coated by a thin PPy shell; the size and the thickness of the PPy shell could be adjusted by simply changing the pyrrole concentration. Benefiting from the protective effect of the PPy shell, the nanoparticles demonstrate enhanced catalytic durability toward the reductive reaction of methylene blue (MB) compared with the citrate-capped gold nanoparticles (AuNPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu W, Chen H, Shi Z, Yu L (2014) Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker. Anal Biochem 453:16–21

    Article  CAS  Google Scholar 

  2. Hu W, Chen H, Zhang H, He G, Li X, Zhang X, Liu Y, Li CM (2014) Sensitive detection of multiple mycotoxins by SPRi with gold nanoparticles as signal amplification tags. J Colloid Interface Sci 431:71–76

    Article  CAS  Google Scholar 

  3. Xia X, Wang Y, Ruditskiy A, Xia Y (2013) 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv Mater 25:6313–6333

    Article  CAS  Google Scholar 

  4. Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261

    Article  CAS  Google Scholar 

  5. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  CAS  Google Scholar 

  6. Au KM, Lu Z, Matcher SJ, Armes SP (2011) Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. Adv Mater 23:5792–5795

    Article  CAS  Google Scholar 

  7. Zang J, Li CM, Bao S-J, Cui X, Bao Q, Sun CQ (2008) Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network. Macromolecules 41:7053–7057

    Article  CAS  Google Scholar 

  8. Patil DS, Pawar SA, Devan RS, Gang MG, Ma Y-R, Kim JH, Patil PS (2013) Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite. Electrochim Acta 105:569–577

    Article  CAS  Google Scholar 

  9. Chen W, Li C-M, Yu L, Lu Z, Zhou Q (2008) In situ AFM study of electrochemical synthesis of polypyrrole/Au nanocomposite. Electrochem Commun 10:1340–1343

    Article  CAS  Google Scholar 

  10. He YH, Yuan JY, Shi GQ (2005) Fabrication of gold nanocrystal-coated polypyrrole nanotubules. J Mater Chem 15:859–862

    Article  CAS  Google Scholar 

  11. Feng XM, Mao CJ, Yang G, Hou WH, Zhu JJ (2006) Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine. Langmuir 22:4384–4389

    Article  CAS  Google Scholar 

  12. Jiang N, Shao L, Wang J (2014) (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv Mater 26:3282–3289

    Article  CAS  Google Scholar 

  13. Ye S, Lu Y (2008) Optical properties of Ag@polypyrrole nanoparticles calculated by Mie theory. J Phys Chem C 112:8767–8772

    Article  CAS  Google Scholar 

  14. Wu J, Zhang X, Yao T, Li J, Zhang H, Yang B (2010) Improvement of the stability of colloidal gold superparticles by polypyrrole modification. Langmuir 26:8751–8755

    Article  CAS  Google Scholar 

  15. Xing, S., Tan, L.H., Chen, T., Yang, Y., Chen, H. (2009) Facile fabrication of triple-layer (Au@Ag)@polypyrrole core-shell and (Au@H2O)@polypyrrole yolk-shell nanostructures. Chem Commun 1653–1654

  16. Xing S, Tan LH, Yang M, Pan M, Lv Y, Tang Q, Yang Y, Chen H (2009) Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains. J Mater Chem 19:3286–3291

    Article  CAS  Google Scholar 

  17. Zhang J, Liu X, Wu S, Xu H, Cao B (2013) One-pot fabrication of uniform polypyrrole/Au nanocomposites and investigation for gas sensing. Sensors Actuators B Chem 186:695–700

    Article  CAS  Google Scholar 

  18. Munoz-Rojas D, Oro-Sole J, Ayyad O, Gomez-Romero P (2011) Shaping hybrid nanostructures with polymer matrices: the formation mechanism of silver-polypyrrole core/shell nanostructures. J Mater Chem 21:2078–2086

    Article  CAS  Google Scholar 

  19. Zhao C, Zhao Q, Zhao Q, Qiu J, Zhu C, Guo S (2007) Preparation and optical properties of Ag/PPy composite colloids. J Photochem Photobiol A Chem 187:146–151

    Article  CAS  Google Scholar 

  20. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  21. Zhang WX, Wen XG, Yang SH (2003) Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir 19:4420–4426

    Article  CAS  Google Scholar 

  22. Liu YC (2002) Evidence of chemical effect on surface-enhanced Raman scattering of polypyrrole films electrodeposited on roughened gold substrates. Langmuir 18:174–181

    Article  CAS  Google Scholar 

  23. Viswanathan S, Narayanan B, Yaakob Z, Periyat P, Padikkaparambil S (2014) Selective formation of aniline over nanogold incorporated cobalt loaded SBA 15 catalysts. J Porous Mater 21:251–262

    Article  CAS  Google Scholar 

  24. Dilshad N, Ansari MS, Beamson G, Schiffrin DJ (2012) Amines as dual function ligands in the two-phase synthesis of stable AuxCu(1-x) binary nanoalloys. J Mater Chem 22:10514–10524

    Article  CAS  Google Scholar 

  25. Wang Z-L, He X-J, Ye S-H, Tong Y-X, Li G-R (2014) Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Appl Mater Interfaces 6:642–647

    Article  CAS  Google Scholar 

  26. Chen W, Lu Z, Li CM (2008) Sensitive human interleukin 5 impedimetric sensor based on polypyrrole-pyrrolepropylic acid-gold nanocomposite. Anal Chem 80:8485–8492

    Article  CAS  Google Scholar 

  27. Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671

    Article  CAS  Google Scholar 

  28. Hu W, Li CM, Dong H (2008) Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors. Anal Chim Acta 630:67–74

    Article  CAS  Google Scholar 

  29. Hu W, Li CM, Cui X, Dong H, Zhou Q (2007) In situ studies of protein adsorptions on poly(pyrrole-co-pyrrole propylic acid) film by electrochemical surface plasmon resonance. Langmuir 23:2761–2767

    Article  CAS  Google Scholar 

  30. Selvan ST, Nogami M (1998) Novel gold-polypyrrole anisotropic colloids: a TEM investigation. J Mater Sci Lett 17:1385–1388

    Article  CAS  Google Scholar 

  31. Henry MC, Hsueh C-C, Timko BP, Freund MS (2001) Reaction of pyrrole and chlorauric acid a New route to composite colloids. J Electrochem Soc 148:D155–D162

    Article  CAS  Google Scholar 

  32. Lee J, Park JC, Song H (2008) A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv Mater 20:1523–1528

    Article  CAS  Google Scholar 

  33. Hao L, Zhu C, Chen C, Kang P, Hu Y, Fan W, Chen Z (2003) Fabrication of silica core–conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. Synth Met 139:391–396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (nos. 21205098 and 21273173), Natural Science Foundation Project of CQ CSTC (cstc2012jjA10099), Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing International Collaboration Base for Science and Technology (Southwest University), Start-up grant under SWU111071 from Southwest University, Chongqing Science and Technology Commission under cstc2012gjhz90002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Chen, H. & Li, C.M. One-step synthesis of monodisperse gold dendrite@polypyrrole core-shell nanoparticles and their enhanced catalytic durability. Colloid Polym Sci 293, 505–512 (2015). https://doi.org/10.1007/s00396-014-3440-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3440-4

Keywords

Navigation