Skip to main content
Log in

A multistimuli-responsive supramolecular vesicle constructed by cyclodextrins and tyrosine

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Stimuli-responsive vesicle is a significant self-assembly. The supramolecular amphiphile strategy provides a simple way to construct the vesicles. Here, we report a β-cyclodextrin/tyrosine supramolecular vesicle based on host-guest recognition. Tyrosine, which is a nontoxic amino acid, is used as the vesicles building blocks. The β-cyclodextrin/tyrosine vesicles were identified by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scattering (DLS). X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) spectrum, hydrogen-1 nuclear magnetic resonance (1H NMR), and two-dimensional nuclear magnetic resonance spectroscopy rotating frame nuclear Overhauser effect spectroscopy (2D NMR ROESY) were further employed to elucidate the vesicle formation mechanism. Furthermore, different host molecules, including α-cyclodextrin and γ-cyclodextrin, can all form vesicles with tyrosine. Finally, the vesicles can respond to multiple external stimuli. Competitive guest molecules and copper ions can all disrupt the vesicles’ architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Scheme 3
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang K, Wang C, Wang Y, Li H, Bao C, Liu J, Zhang X, Yang Y (2013) Electrospun nanofibers and multi-responsive supramolecular assemblies constructed from a pillar[5]arene-based receptor. Chem Commun 49:10528–10530

    Article  CAS  Google Scholar 

  2. Wang C, Guo Y, Wang Y, Xu H, Wang R, Zhang X (2009) Supramolecular amphiphiles based on a water-soluble charge-transfer complex: fabrication of ultralong nanofibers with tunable straightness. Angew Chem Int Ed 48:8962–8965

    Article  CAS  Google Scholar 

  3. Yu G, Xue M, Zhang Z, Li J, Han C, Huang F (2012) A water-soluble pillar[6]arene: synthesis, host-guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J Am Chem Soc 134:13248–13251

    Article  CAS  Google Scholar 

  4. Li H, Chen D, Sun Y, Zheng Y, Tan L, Weiss P, Yang Y (2013) Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. J Am Chem Soc 135:1570–1576

    Article  CAS  Google Scholar 

  5. Sun Y, Zhou Y, Li Q, Yang Y (2013) Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene[2]pseudorotaxanes for controlled cargo release. Chem Commun 49:9033–9035

    Article  CAS  Google Scholar 

  6. Wang C, Guo Y, Wang Y, Xu H, Zhang X (2009) Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. Chem Commun 5380–5382

  7. Wang Y, Han P, Xu H, Wang Z, Zhang X, Kabanov A (2010) Photocontrolled self-assembly and disassembly of block ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26:709–715

    Article  CAS  Google Scholar 

  8. Stano P, D’ Aguanno E, Bolz J, Fahr A, Luisi P (2013) A remarkable self-organization process as the origin of primitive functional cells. Angew Chem Int Ed 52:13397–13400

    Article  CAS  Google Scholar 

  9. Gao X, Lu F, Dong B, Zhou T, Tian W, Zheng L (2014) Zwitterionic vesicles with AuCl4 counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chem Commun 50:8783–8786

    Article  CAS  Google Scholar 

  10. Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N (2013) Photoreaction of a hydroxyalkyphenone with the membrane of polymersomes: a versatile method to generate semipermeable nanoreactors. J Am Chem Soc 135:9204–9212

    Article  CAS  Google Scholar 

  11. Zhang H, Ma X, Nguyen K, Zhao Y (2013) Biocompatible pillararene-assembly-based carriers for dual bioimaging. ACS Nano 7:7853–7863

    Article  CAS  Google Scholar 

  12. Wang L, Chierico L, Little D, Patikarnmonthon N, Yang Z, Azzouz M, Madsen J, Armes S, Battaglia G (2012) Encapsulation of biomacromolecules within polymersomes by electroporation. Angew Chem Int Ed 51:11122–11125

    Article  CAS  Google Scholar 

  13. Sun T, Yan H, Liu G, Hao J, Su J, Li S, Xing P, Hao A (2012) Strategy of directly employing paclitaxel to construct vesicles. J Phys Chem B 116:14628–14636

    Article  CAS  Google Scholar 

  14. Wang K, Guo D, Zhao M, Liu Y (2014) A supramolecular vesicle based on the complexation of p-sulfonatocalixarene with protamine and its trypsin-triggered controllable-release properties. Chem Eur J 20:1–10

    Article  Google Scholar 

  15. Jiao D, Geng J, Loh X, Das D, Lee T, Scherman O (2012) Supramolecular peptide amphiphile vesicles through host–guest complexation. Angew Chem Int Ed 51:9633–9637

    Article  CAS  Google Scholar 

  16. Yu G, Han C, Zhang Z, Chen J, Yan X, Zheng B, Liu S, Huang F (2012) Pillar[6]arene-based photoresponsive host−guest complexation. J Am Chem Soc 134:8711–8717

    Article  CAS  Google Scholar 

  17. Tao S, Li Y, Zhang H, Li J, Xin F, Kong L, Hao A (2011) pH-reversible vesicles based on the “supramolecular amphiphilies” formed by cyclodextrin and anthraquinone derivate. Colloids surf A 375:87–96

    Article  Google Scholar 

  18. Wang Y, Ma N, Wang Z, Zhang X (2007) Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with a-cyclodextrin. Angew Chem Int Ed 46:2823–2826

    Article  CAS  Google Scholar 

  19. Zhang H, Shen J, Liu Z, Hao A, Bai Y, An W (2010) Multi-responsive cyclodextrin vesicles assembled by ‘supramolecular bola-amphiphiles’. Supramol Chem 22:297–310

    Article  CAS  Google Scholar 

  20. Zhang H, Xin F, An W, Hao A, Wang X, Zhao X, Liu Z, Sun L (2010) Oxidizing-responsive vesicles made from “tadpole-like supramolecular amphiphiles” based on inclusion complexes between driving molecules and β-cyclodextrin. Colloids surf A 363:78–85

    Article  CAS  Google Scholar 

  21. Wang K, Guo D, Wang X, Liu Y (2011) Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5:2880–2894

    Article  CAS  Google Scholar 

  22. Sun T, Zhang H, Kong L, Qiao H, Li Y, Xin F, Hao A (2011) Controlled transformation from nanorods to vesicles induced by cyclomaltoheptaoses (β-cyclodextrins). Carbohyd Res 346:285–293

    Article  CAS  Google Scholar 

  23. Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L (2013) pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J Am Chem Soc 135:10542–10549

    Article  CAS  Google Scholar 

  24. Ma M, Guan Y, Zhang C, Hao J, Xing P, Su J, Li S, Chu X, Hao A (2014) Stimulus-responsive supramolecular vesicles with effective anticancer activity prepared by cyclodextrin and ftorafur. Colloids surf A 454:38–45

    Article  CAS  Google Scholar 

  25. Li L, Rosenthal M, Zhang H, Hernandez J, Drechsler M, Phan K, Rütten S, Zhu X, Ivanov D, Möller M (2012) Light-switchable vesicles from liquid-crystalline homopolymer-surfactant complexes. Angew Chem Int Ed 51:11616–11619

    Article  CAS  Google Scholar 

  26. Guo D, Wang K, Wang Y, Liu Y (2012) Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 134:10244–10250

    Article  CAS  Google Scholar 

  27. Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y (2010) Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc 132:9268–9270

    Article  CAS  Google Scholar 

  28. Szejtli J (2005) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754

    Article  Google Scholar 

  29. Su J, Sheng X, Li S, Sun T, Liu G, Hao A (2012) Effective regioselective protection of amino groups of lysine achieved by a supramolecular enzyme-mimic approach. Org Biomol Chem 10:9319–9324

    Article  CAS  Google Scholar 

  30. Sun T, Guo Q, Zhang C, Hao J, Xing P, Su J, Li S, Hao A, Liu G (2012) Self-assembled vesicles prepared from amphiphilic cyclodextrins as drug carriers. Langmuir 28:8625–8636

    Article  CAS  Google Scholar 

  31. Zhang H, Liu Z, Xin F, An W, Hao A, Li J, Li Y, Sun L, Sun T, Zhao W, Li Y, Kong L (2011) Successively-responsive drug-carrier vesicles assembled by ‘supramolecular amphiphiles’. Carbohyd Res 346:294–304

    Article  CAS  Google Scholar 

  32. Sun T, Zhang H, Yan H, Li J, Cheng G, Hao A, Qiao H, Xin F (2011) Sensitive fluorescent vesicles based on the supramolecular inclusion of β-cyclodextrins with N-alkylamino-L-anthraquinone. Supramol Chem 23:351–364

    Article  CAS  Google Scholar 

  33. Liu G, Jin Q, Liu X, Lv L, Chen C, Ji J (2011) Biocompatible vesicles based on PEO-b-PMPC/a-cyclodextrin inclusion complexes for drug delivery. Soft Matter 7:662–669

    Article  CAS  Google Scholar 

  34. Tao W, Liu Y, Jiang B, Yu S, Huang W, Zhou Y, Yan D (2011) A linear-hyperbranched supramolecular amphiphile and its self-assembly into vesicles with great ductility. J Am Chem Soc 134:762–764

    Article  Google Scholar 

  35. Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F (2012) Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J Am Chem Soc 134:19489–19497

    Article  CAS  Google Scholar 

  36. Li Y, Liu J, Du G, Yan H, Wang H, Zhang H, An W, Zhao W, Sun T, Xin F, Kong L, Li Y, Hao A, Hao J (2010) Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N, N-dimethylformamide. J Phys Chem B 114:10321–10326

    Article  CAS  Google Scholar 

  37. Li G, McGown L (1994) Molecular nanotube aggregates of β-and γ-cyclodextrins linked by diphenylhexatrienes. Sci 264:249–251

    Article  CAS  Google Scholar 

  38. Hou X, Ke C, Cheng C, Song N, Blackburn A, Sarjeant A, Botros Y, Yang Y, Stoddart J (2014) Efficient syntheses of pillar[6]arene-based hetero[4]rotaxanes using a cooperative capture strategy. Chem Commun 50:6196–6199

    Article  CAS  Google Scholar 

  39. Sun T, Ma M, Yan H, Shen J, Su J, Hao A (2013) Vesicular particles directly assembled from the cyclodextrin/UR-144 supramolecular amphiphiles. Colloids surf A 424:105–112

    Article  CAS  Google Scholar 

  40. An W, Zhang H, Sun L, Hao A, Hao J, Xin F (2010) Reversible vesicles based on one and two head supramolecular cyclodextrin amphiphile induced by methanol. Carbohyd Res 345:914–921

    Article  CAS  Google Scholar 

  41. Nielsena A, Steffensenb K, Larsena K (2009) Self-assembling microparticles with controllable disruption properties based on cyclodextrin interactions. Colloids surf B 73:267–275

    Article  Google Scholar 

  42. Tao W, Zhang D, Wang F, Thomas P, Cooks R (1999) Kinetic resolution of D, L-amino acids based on gas-phase dissociation of copper(II) complexes. Anal Chem 71:4427–4429

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiyou Hao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Xu, S., Xing, P. et al. A multistimuli-responsive supramolecular vesicle constructed by cyclodextrins and tyrosine. Colloid Polym Sci 293, 891–900 (2015). https://doi.org/10.1007/s00396-014-3424-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3424-4

Keywords

Navigation