Skip to main content
Log in

Effect of microgel content on the shear and extensional rheology of polyacrylonitrile solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Crosslinked polyacrylonitrile (cPAN) particles with uniform size were synthesized through precipitation polymerization. The as-formed cPAN nanoparticles were dispersed in polyacrylonitrile (PAN) solutions to form microgels with various contents, which were used as model to study the influence of the microgels on the shear and extensional rheology of PAN solutions. Flow curves of steady shear viscosity displayed shear thinning and followed time–temperature superposition principle. The dependency of activation energy on the content of cPAN microgels indicated that introduction of microgels weakened the temperature sensitivity of PAN solutions. For extensional rheology study, we utilized the capillary thinning rheometry to characterize the elongation relaxation time and apparent extensional viscosity. Study of filament thinning dynamics with a series of system strains confirmed that the higher content of cPAN microgels the lower extensional strength and worse spinnability of the PAN solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fitzer E, Geigl KH, Huttner W (1980) The influence of carbon fiber surface treatment on the mechanical properties of carbon/carbon composites. Carbon 18(4):265–270

    Article  CAS  Google Scholar 

  2. Lu X, Xiao P (2013) Preparation of in situ grown silicon carbide nanofibers radially onto carbon fibers and their effects on the microstructure and flexural properties of carbon/carbon composites. Carbon 59:176–183

    Article  CAS  Google Scholar 

  3. Reznik B, Gerthsen D, Huttinger KJ (2001) Micro- and nanostructure of the carbon matrix of infiltrated carbon fiber felts. Carbon 39(2):215–229

    Article  CAS  Google Scholar 

  4. Zhang MQ, Xu JR, Zhang ZY, Zeng HM, Xiong XD (1996) Effect of transcrystallinity on tensile behaviour of discontinuous carbon fibre reinforced semicrystalline thermoplastic composites. Polymer 37(23):5151–5158

    Article  CAS  Google Scholar 

  5. Zhao G, Wang T, Wang Q (2011) Surface modification of carbon fiber and its effects on the mechanical and tribological properties of the polyurethane composites. Polym Compos 32(11):1726–1733

    Article  CAS  Google Scholar 

  6. Jang Y, Kim S, Lee S, Kim D, Um M (2005) Fabrication of carbon nano-sized fiber reinforced copper composite using liquid infiltration process. Compos Sci Technol 65(5):781–784

    CAS  Google Scholar 

  7. Korner C, Schaff W, Ottmuller M, Singer RF (2000) Carbon long fiber reinforced magnesium alloys. Adv Eng Mater 2(6):327–337

    Article  CAS  Google Scholar 

  8. Lee WS, Sue WC, Lin CF (2000) The effects of temperature and strain rate on the properties of carbon-fiber-reinforced 7075 aluminum alloy metal-matrix composite. Compos Sci Technol 60(10):1975–1983

    Article  CAS  Google Scholar 

  9. Fitzer E, Muller DJ (1975) The influence of oxygen on the chemical reactions during stabilization of PAN as carbon fiber precursor. Carbon 13(1):63–69

    Article  CAS  Google Scholar 

  10. Guigon M, Oberlin A, Desarmot G (1984) Microtexture and structure of some high tensile strength, PAN-base carbon fibres. Fibre Sci Technol 20(1):55–72

    Article  CAS  Google Scholar 

  11. Huang Y, Young RJ (1995) Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres. Carbon 33(2):97–107

    Article  CAS  Google Scholar 

  12. Gupta A, Harrison IR (1996) New aspects in the oxidative stabilization of pan-based carbon fibers. Carbon 34(11):1427–1445

    Article  CAS  Google Scholar 

  13. Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92(8):1421–1432

    Article  CAS  Google Scholar 

  14. Wang C, Chien HS, Hsu CH, Wang YC, Wang CT, Lu HA (2007) Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules 40(22):7973–7983

    Article  CAS  Google Scholar 

  15. Chen JC, Harrison IR (2002) Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 40(1):25–45

    Article  CAS  Google Scholar 

  16. Lian F, Liu J, Ma Z, Liang J (2012) Stretching-induced deformation of polyacrylonitrile chains both in quasicrystals and in amorphous regions during the in situ thermal modification of fibers prior to oxidative stabilization. Carbon 50(2):488–499

    Article  CAS  Google Scholar 

  17. Mittal J, Mathur RB, Bahl OP (1997) Post spinning modification of PAN fibres—a review. Carbon 35(12):1713–1721

    Article  CAS  Google Scholar 

  18. Tan LJ, Chen HF, Pan D, Pan N (2008) Investigating the spinnability in the dry-jet wet spinning of PAN precursor fiber. J Appl Polym Sci 110(4):1997–2000

    Article  CAS  Google Scholar 

  19. Du WP, Chen HF, Xu HF, Pan D, Pan N (2009) Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution with water. J Polym Sci B Polym Phys 47(15):1437–1442

    Article  CAS  Google Scholar 

  20. Liu SP, Jiang HY, Du WP, Pan D (2012) Spinnability in pre-gelled gel spinning of polyacrylonitrile precursor fibers. Fiber Polym 13(7):846–849

    Article  CAS  Google Scholar 

  21. Yamane A, Sawai D, Kameda T, Kanamoto T, Ito M, Porter RS (1997) Development of high ductility and tensile properties upon two-stage draw of ultrahigh molecular weight poly (acrylonitrile). Macromolecules 30(14):4170–4178

    Article  CAS  Google Scholar 

  22. Sawai D, Yamane A, Kameda T, Kanamoto T, Ito M, Yamazaki H et al (1999) Uniaxial drawing of isotactic poly (acrylonitrile): development of oriented structure and tensile properties. Macromolecules 32(17):5622–5630

    Article  CAS  Google Scholar 

  23. Bazilevsky AV, Entov VM, Rozhkov AN (1990) Liquid filament microrheometer and some of its applications. In: Oliver DR, ed. Third European Rheology Conference and Golden Jubilee Meeting of the British Society of Rheology. Springer, Netherlands

  24. McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44(3):653–670

    Article  CAS  Google Scholar 

  25. Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45(1):115–138

    Article  CAS  Google Scholar 

  26. McKinley GH (2005) Rheology reviews. British Society of Rheology, Aberystwyth

  27. Duxenneuner MR, Fischer P, Windhab EJ, Cooper-White JJ (2008) Extensional properties of hydroxypropyl ether guar gum solutions. Biomacromolecules 9(11):2989–2996

    Article  CAS  Google Scholar 

  28. Kheirandish S, Gubaydullin I, Willenbacher N (2008) Shear and elongational flow behavior of acrylic thickener solutions. Part II: effect of gel content. Rheol Acta 48(4):397–407

    Article  Google Scholar 

  29. Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanolitre biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage. Soft Matter 7(22):10889–10898

    Article  CAS  Google Scholar 

  30. Tan L, Pan J, Wan A (2011) Shear and extensional rheology of polyacrylonitrile solution: effect of ultrahigh molecular weight polyacrylonitrile. Colloid Polym Sci 290(4):289–295

    Article  Google Scholar 

  31. Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699

    Article  CAS  Google Scholar 

  32. Peebles LH (1958) Branching in polyacrylonitrile. J Am Chem Soc 80(21):5603–5607

    Article  CAS  Google Scholar 

  33. Heyn ANJ (1959) Electron microscope observations on microgel and linear macromolecules of polyacrylonitrile. J Polym Sci 41(138):23–32

    Article  CAS  Google Scholar 

  34. Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2013) Rheological evidence of gel formation in dilute poly (acrylonitrile) solutions. Macromolecules 46(1):257–266

    Article  CAS  Google Scholar 

  35. Sachsenheimer D, Hochstein B, Buggisch H, Willenbacher N (2012) Determination of axial forces during the capillary breakup of liquid filaments—the tilted CaBER method. Rheol Acta 51(10):909–923

    Article  CAS  Google Scholar 

  36. Zhang WX, Liu J, Wu G (2003) Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 41(14):2805–2812

    Article  CAS  Google Scholar 

  37. Ngoc UNT, Hong SC (2013) Structural evolution of poly (acrylonitrile-co-itaconic acid) during thermal oxidative stabilization for carbon materials. Macromolecules 46(15):5882–5889

    Article  Google Scholar 

  38. Tan L, Liu S, Pan D, Pan N (2009) Gelation of polyacrylonitrile in a mixed solvent: scaling and fractal analysis. Soft Matter 5(21):4297–4304

    Article  CAS  Google Scholar 

  39. Tan L, Liu S, Pan D (2009) Water effect on the gelation behavior of polyacrylonitrile/dimethyl sulfoxide solution. Colloid Surf A-Physicochem Eng Asp 340(1–3):168–173

    Article  CAS  Google Scholar 

  40. Ma C, Du W, Chen H, Liu Z, Qin Z, Pan D (2008) Influences of nonsolvent and temperature on critical viscoelastic behaviors of ternary polyacrylonitrile solutions around the sol-gel threshold. J Polym Sci B Polym Phys 46(23):2637–2643

    Article  CAS  Google Scholar 

  41. Song H, Luo Z, Wang C, Hao X, Gao J (2013) Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydr Polym 98(1):161–167

    Article  CAS  Google Scholar 

  42. Uematsu H, Aoki Y, Sugimoto M, Koyama K (2011) Rheology of SiO2/(acrylic polymer/epoxy) suspensions. III. Uniaxial elongational viscosity. Rheol Acta 50(5–6):433–439

    Article  CAS  Google Scholar 

  43. Devasia R, Nair CPR, Ninan KN (2008) Temperature and shear dependencies of rheology of poly (acrylonitrile-co-itaconic acid) dope in DMF. Polym Adv Technol 19(12):1771–1778

    Article  CAS  Google Scholar 

  44. Yin H, Mo D, Chen D (2009) Orientation behavior of attapulgite nanoparticles in poly (acrylonitrile)/attapulgite solutions by rheological analysis. J Polym Sci B Polym Phys 47(10):945–954

    Article  CAS  Google Scholar 

  45. Song YH, Zheng Q, Cao Q (2009) On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. J Rheol 53(6):1379–1388

    Article  CAS  Google Scholar 

  46. Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newtonian Fluid Mech 72(1):31–53

    Article  CAS  Google Scholar 

  47. Papageorgiou DT (1995) On the breakup of viscous liquid threads. Phys Fluids 7(7):1529–1544

    Article  CAS  Google Scholar 

  48. Ng SL, Mun RP, Boger DV, James DF (1996) Extensional viscosity measurements of dilute solutions of various polymers. J Non-Newtonian Fluid Mech 65(2–3):291–298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the National Basic Research Program of China (Grant No. 2011CB605604), the Special Program for Innovation Methods of MOST of China (Grant No. 2011IM030400), and the Knowledge Innovation Project of CAS (Grant No. KJCX2-YW-N39) for the financial support of this work. J. Xu thanks the Taishan Scholar Program for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhu, C., Dong, H. et al. Effect of microgel content on the shear and extensional rheology of polyacrylonitrile solution. Colloid Polym Sci 293, 587–596 (2015). https://doi.org/10.1007/s00396-014-3419-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3419-1

Keywords

Navigation