Skip to main content
Log in

Markov chain model for the critical micelle concentration of surfactant mixtures

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An extension of the Markov chain model (MC) for micellization is proposed, which allows the distribution of the surfactants between the monomer solution and the micelles in a mixed surfactant system to be predicted. The dependence of the critical micelle concentration (cmc) on the composition of the solution is investigated. The equilibrium thermodynamic relation between cmc and micelle composition is discussed. The case of ternary mixtures is analyzed, and theoretical triangular diagram is constructed according to MC. Available experimental data for binary and ternary mixtures agree well with the new MC theory. The dependence of MC parameters on the structure of the surfactants is discussed. Comparison of MC with the simple mixture (“regular solution”) model is presented. The parameters of the MC theory are related to the interaction parameter β SM of the simple mixture model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kronberg B (1997) Surfactant mixtures. Curr Opin Colloid Interface Sci 2:456–463

    Article  CAS  Google Scholar 

  2. Holland PM, Rubingh DN (1992) Mixed surfactant systems. ACS Symposium Series, vol 501. ACS, Washington

    Book  Google Scholar 

  3. Ogino K, Abe M (1992) Mixed surfactant systems. Surfactant Science Series, vol 46. CRC Press, New York

    Google Scholar 

  4. Nagarajan R (2014) One hundred years of micelles: evolution of the theory of micellization. In: Romsted L (ed) Surfactant science and technology, retrospects and prospects. CRC Press, New York, Ch 1

    Google Scholar 

  5. Hines JD (2001) Theoretical aspects of micellisation in surfactant mixtures. Curr Opin Colloid Interface Sci 6:350–356

    Article  CAS  Google Scholar 

  6. Guggenheim EA (1967) Thermodynamics. Elsevier, Amsterdam, Ch 4

    Google Scholar 

  7. Porter AW (1920) On the vapour-pressures of mixtures. Trans Faraday Soc 16:336–345

    Article  Google Scholar 

  8. Rubingh DN (1979) Mixed micelle solutions. In: Mittal KL (ed) Solution chemistry of surfactants, vol 1. Plenum, New York, pp 337–354

    Chapter  Google Scholar 

  9. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York

    Book  Google Scholar 

  10. Holland PM (1986) Nonideal mixed micellar solutions. Adv Colloid Interface Sci 26:111–129

    Article  CAS  Google Scholar 

  11. Hua XY, Rosen MJ (1982) Synergism in binary mixtures of surfactants: I. Theoretical analysis. J Colloid Interface Sci 90:212–219

    Article  CAS  Google Scholar 

  12. Nagarajan R (1985) Molecular theory for mixed micelles. Langmuir 1:331–341

    Article  CAS  Google Scholar 

  13. Shiloach A, Blankschtein D (1998) Predicting micellar solution properties of binary surfactant mixtures. Langmuir 14:1618–1636

    Article  CAS  Google Scholar 

  14. Kamrath RF, Franses EI (1984) Mass-action model of mixed micellization. J Phys Chem 88:1642–1648

    Article  CAS  Google Scholar 

  15. Shchekin AK, Kuni FM, Grinin AP, Rusanov AI (2005) Nucleation in micellization processes. In: Schmelzer JWP (ed) Nucleation theory and applications. Wiley, Weinheim, Ch 9

    Google Scholar 

  16. Georgiev GS (1996) Markov chain model of mixed surfactant systems. Colloid Polym Sci 274:49–58

    Article  CAS  Google Scholar 

  17. Yu Z-J, Zhao G-X (1993) Micellar compositions in mixed surfactant solutions. J Colloid Interface Sci 156:325–328

    Article  CAS  Google Scholar 

  18. D’Errico G, Ortona O, Paduano L, Tedeschi A, Vitagliano V (2002) Mixed micellar aggregates of cationic and nonionic surfactants with short hydrophobic tails. An intradiffusion study. Phys Chem Chem Phys 4:5317–5324

    Article  Google Scholar 

  19. Osborne-Lee IW, Schechter RS, Wade WH, Barakat Y (1985) A new theory and new results for mixed nonionic—anionic micelles. J Colloid Interface Sci 108:60–74

    Article  CAS  Google Scholar 

  20. Mayo FR, Lewis FM (1944) Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J Am Chem Soc 66:1594–1601

    Article  CAS  Google Scholar 

  21. Mayo FR, Lewis FM, Walling C (1948) Copolymerization. VIII. The relation between structure and reactivity of monomers in copolymerization. J Am Chem Soc 70:1529–1533

    Article  CAS  Google Scholar 

  22. Fineman M, Ross SD (1950) Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci 5:259–262

    Article  CAS  Google Scholar 

  23. Clint JH (1975) Micellization of mixed nonionic surface active agents. J Chem Soc Faraday Trans 71:1327–1334

    Article  CAS  Google Scholar 

  24. Vautier-Giongo C, Bakshi MS, Singh J, Ranganathan R, Hajdu J, Bales BL (2005) Effects of interactions on the formation of mixed micelles of 1,2-diheptanoyl-sn-glycero-3-phosphocholine with sodium dodecyl sulfate and dodecyltrimethylammonium bromide. J Colloid Interface Sci 282:149–155

    Article  CAS  Google Scholar 

  25. García-Río L, Leis JR, López-Fontán JL, Mejuto JC, Mosquera V, Rodríguez-Dafonte P (2005) Mixed micelles of alkylamines and cetyltrimethylammonium chloride. J Colloid Interface Sci 289:521–529

    Article  Google Scholar 

  26. Prigogine I, Defay R (1954) Chemical thermodynamics. Longmans Green, London, Ch XXI

    Google Scholar 

  27. Slavchov RI, Karakashev SI, Ivanov IB (2014) Ionic surfactants and ion-specific effects: adsorption, micellization and thin liquid films. In: Romsted L (ed) Surfactant science and technology, retrospects and prospects. CRC Press, New York, Ch 2

    Google Scholar 

  28. Maeda H (2005) A thermodynamic analysis of charged mixed micelles in water. J Phys Chem B 109:15933–15940

    Article  CAS  Google Scholar 

  29. Maeda H (2004) Electrostatic contribution to the stability and the synergism of ionic/nonionic mixed micelles in salt solutions. J Phys Chem B 108:6043–6051

    Article  CAS  Google Scholar 

  30. Menger FM (1979) The structure of micelles. Acc Chem Res 12:111–117

    Article  CAS  Google Scholar 

  31. Menger FM, Zana R, Lindman B (1988) Portraying the structure of micelles. J Chem Educ 75:115

    Article  Google Scholar 

  32. Gharibi H, Javadian S, Sohrabi B, Behjatmanesh R (2005) Investigation of interaction parameters in mixed micelle using pulsed field gradient NMR spectroscopy. J Colloid Interface Sci 285:351

    Article  CAS  Google Scholar 

  33. Shiloach A, Blankschtein D (1998) Prediction of critical micelle concentrations of nonideal ternary surfactant mixtures. Langmuir 14:4105–4114

    Article  CAS  Google Scholar 

  34. Hines JD, Thomas RK, Garrett PR, Rennie GK, Penfold J (1998) A study of the interactions in a ternary surfactant system in micelles and adsorbed layers. J Phys Chem B 102:9708–9713

    Article  CAS  Google Scholar 

  35. Ben Ghoulam M, Moatadid N, Graciaa A, Lachaise J, Marion G, Schechter RS (1998) Demixing in ternary mixed micelles. J Colloid Interface Sci 200:74–80

    Article  Google Scholar 

  36. Basu Ray G, Ghosh S, Moulik SP (2010) Ternary mixtures of alkyltriphenylphosphonium bromides (C12TPB, C14TPB and C16TPB) in aqueous medium: their interfacial, bulk and fluorescence quenching behaviour. J Chem Sci 122:109–117

    Article  Google Scholar 

  37. Shinoda K, Nakagawa T, Tamamushi B-I, Isemuta T (1963) Colloidal surfactants, some physicochemical properties. Academic, New York

    Google Scholar 

  38. Scott AB, Tartar HV, Lingafelter EC (1943) Electrolytic properties of aqueous solutions of octyltrimethylammonium octanesulfonate and decyltrimethylammonium decanesulfonate. J Am Chem Soc 65:698–701

    Article  CAS  Google Scholar 

  39. Prigogine I (1957) The molecular theory of solutions. North Holland, Amsterdam, Ch. III

    Google Scholar 

  40. Alfrey T, Price CC (1947) Relative reactivities in vinyl copolymerization. J Polymer Sci 2:101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Bulgarian National Science Fund Grants DDVU 02/12 and DDVU 02/43. The fruitful discussions of the work with Prof. Emil Manev are gratefully acknowledged. R. Slavchov is grateful to FP7 project BeyondEverest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radomir I. Slavchov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The following supplementary files are available in the online version of this article: (1) Regular vs. simple mixture. (2) Regarding the possibility that the strict Markov chain model result for the micelle composition is valid at equilibrium. (3) A mixture of sodium alkylbenzenesulfonates. (4) Recipe for constructing the triangular diagram for cmc in ternary surfactant mixtures. (5) List of symbols and abbreviations. (DOCX 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavchov, R.I., Georgiev, G.S. Markov chain model for the critical micelle concentration of surfactant mixtures. Colloid Polym Sci 292, 2927–2937 (2014). https://doi.org/10.1007/s00396-014-3337-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3337-2

Keywords

Navigation