Skip to main content
Log in

Temperature-resistivity characteristics of a segregated conductive CB/PP/UHMWPE composite

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A carbon black (CB)/polypropylene (PP)/ultrahigh-molecular-weight polyethylene (UHMWPE) composite with a segregated structure was fabricated by using binary polymer granules as matrices. In preparation, an ethanol-assisted dispersion method was employed to disperse CB particles on the surface of the two polymer granules. The segregated conductive network was then constructed by hot compaction based on the volume exclusion effect of the polymer matrices. The conductive composite shows an ultralow percolation threshold of 0.34 vol.%. In temperature-resistivity test, a double positive temperature coefficient (PTC) effect was observed. In addition, the negative temperature coefficient (NTC) effect was eliminated significantly. These interesting temperature-resistivity behaviors were ascribed to the introduction of the binary polymer matrices and the mobility limitation of CB particles located at the PP/UHMWPE interface. These characteristics were probed by in situ morphology observation in heating process. The present paper provides a novel route for preparing conductive composites with an ultralow percolation threshold, a wider PTC region, and a zero NTC effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dai K, Xu XB, Li ZM (2007) Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer 48:849–859

    Article  CAS  Google Scholar 

  2. Dai K, Li ZM, Xu XB (2008) Electrically conductive in situ microfibrillar composite with a selective carbon black distribution: an unusual resistivity-temperature behavior upon cooling. Polymer 49:1037–1048

    Article  CAS  Google Scholar 

  3. Zha JW, Li WK, Liao RJ, Bai JB, Dang ZM (2013) High performance hybrid carbon fillers/binary–polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance. J Mater Chem A 1:843–851

    Article  CAS  Google Scholar 

  4. Dang ZM, Li WK, Xu HP (2009) Origin of remarkable positive temperature coefficient effect in the modified carbon black and carbon fiber cofilled polymer composites. J Appl Phys 106:024913

    Article  Google Scholar 

  5. Bao SP, Liang GD, Tjong SC (2011) Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon 49:1758–1768

    Article  CAS  Google Scholar 

  6. Deng H, Lin L, Ji MZ, Zhang SM, Yang MB, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627–655

    Article  CAS  Google Scholar 

  7. Luo YL, Wang GC, Zhang BY, Zhang ZP (1998) The influence of crystalline and aggregate structure on PTC characteristic of conductive polyethylene/carbon black composite. Eur Polym J 34:1221–1227

    Article  CAS  Google Scholar 

  8. Isaji S, Bin YZ, Matsuo M (2009) Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer 50:1046–1053

    Article  CAS  Google Scholar 

  9. Heaney MB (1996) Resistance-expansion-temperature behavior of a disordered conductor-insulator composite. Appl Phys Lett 69:2602–2604

    Article  CAS  Google Scholar 

  10. Azulay D, Eylon M, Eshkenazi O, Toker D, Balberg M, Shimoni N, Millo O, Balberg I (2003) Electrical-thermal switching in carbon-black-polymer composites as a local effect. Phys Rev Lett 90:236601

    Article  CAS  Google Scholar 

  11. Duggal AR, Levinson LM (1997) High power switching behavior in electrically conductive polymer composite materials. Appl Phys Lett 71:1939–1941

    Article  CAS  Google Scholar 

  12. Chan CM, Cheng CL, Yuen MMF (1997) Electrical properties of polymer composites prepared by sintering a mixture of carbon black and utra-high molecular weight polyethylene powder. Polym Eng Sci 37:1127–1136

    Article  CAS  Google Scholar 

  13. Xi Y, Ishikawa H, Bin YZ, Matsuo M (2004) Positive temperature coefficient effect of LMWPE-UHMWPE blends filled with short carbon fibers. Carbon 42:1699–1706

    Article  CAS  Google Scholar 

  14. Zhang C, Ma CA, Wang P, Sumita M (2005) Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon 43:2544–2553

    Article  CAS  Google Scholar 

  15. Mironi-Harpaz I, Narkis M (2001) Electrical behavior and structure of polypropylene/ultrahigh molecular weight polyethylene/carbon black immiscible blends. J Appl Polym Sci 81:104–115

    Article  CAS  Google Scholar 

  16. Mironi-Harpaz I, Narkis M (2001) Thermoelectric behavior (PTC) of carbon black-containing TPX/UHMWPE and TPX/XL-UHMWPE blends. J Polym Sci B Polym Phys 39:1415–1428

    Article  CAS  Google Scholar 

  17. Dai K, Zhang YC, Tang JH, Ji X, Li ZM (2012) Anomalous attenuation and structural origin of positive temperature coefficient (PTC) effect in a carbon black (CB)/poly (ethylene terephthalate) (PET)/polyethylene (PE) electrically conductive microfibrillar polymer composite with a preferential CB distribution. J Appl Polym Sci 125:E561–E570

    Article  CAS  Google Scholar 

  18. Di WH, Zhang G, Xu JQ, Peng Y, Wang XJ, Xie ZY (2003) Positive-temperature-coefficient/negative-temperature-coefficient effect of low-density polyethylene filled with a mixture of carbon black and carbon fiber. J Polym Sci B Polym Phys 41:3094–3101

    Article  CAS  Google Scholar 

  19. Bao Y, Xu L, Pang H, Yan DX, Chen C, Zhang WQ, Tang JH, Li ZM (2013) Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structure. J Mater Sci 48:4892–4898

    Article  CAS  Google Scholar 

  20. Pang H, Chen C, Bao Y, Chen J, Ji X, Lei J, Li ZM (2012) Electrically conductive carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure. Mater Lett 79:96–99

    Article  CAS  Google Scholar 

  21. Pang H, Zhang YC, Chen T, Zeng BQ, Li ZM (2010) Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. Appl Phys Lett 96:251907

    Article  Google Scholar 

  22. Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004) Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv Mater 16:150–153

    Article  CAS  Google Scholar 

  23. Pang H, Chen T, Zhang GM, Zeng BQ, Li ZM (2010) An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater Lett 64:2226–2229

    Article  CAS  Google Scholar 

  24. Ren PG, Di YY, Zhang Q, Li L, Pang H, Li ZM (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297:437–443

    Article  CAS  Google Scholar 

  25. Gao JF, Li ZM, Meng QJ, Yang Q (2008) CNTs/UHMWPE composites with a two-dimensional conductive network. Mater Lett 62:3530–3532

    Article  CAS  Google Scholar 

  26. Hu HL, Zhang G, Xiao LG, Wang HJ, Zhang QS, Zhao ZD (2012) Preparation and electrical conductivity of graphene/ultrahigh molecular weight polyethylene composites with a segregated structure. Carbon 50:4596–4599

    Article  CAS  Google Scholar 

  27. Tan YQ, Song YH, Cao Q, Zheng Q (2011) Characterization of carbon black-filled immiscible polypropylene/polystyrene blends. Polym Int 60:823–832

    Article  CAS  Google Scholar 

  28. Xu HP, Dang ZM, Shi DH, Bai JB (2008) Remarkable selective localization of modified nanoscaled carbon black and positive temperature coefficient effect in binary-polymer matrix composites. J Mater Chem 18:2685–2690

    Article  CAS  Google Scholar 

  29. Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene-acrylonitrile). Macromol Rapid Commun 30:423–429

    Article  Google Scholar 

  30. Li B, Zhang YC, Li ZM, Li SN, Zhao XN (2010) Easy fabrication and resistivity-temperature behavior of an anisotropically conductive carbon nanotube-polymer composite. J Phys Chem B 114:689–696

    Article  CAS  Google Scholar 

  31. Feng JY, Chan CM (2000) Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 41:4559–4565

    Article  CAS  Google Scholar 

  32. Gao JF, Li ZM, Peng S, Yan DX (2009) Temperature-resistivity behaviour of CNTs/UHMWPE composites with a two-dimensional conductive network. Polym-Plast Technol 48:478–481

    Article  CAS  Google Scholar 

  33. Meyer J (1974) Stability of polymer composites as positive-temperature-coefficient resistors. Polym Eng Sci 14:706–716

    Article  CAS  Google Scholar 

  34. Balberg I, Azulay D, Toker D, Millo O (2004) Percolation and tunneling in composite materials. Int J Mod Phys B 18:2091–2121

    Article  CAS  Google Scholar 

  35. Bin Y, Xu C, Zhu D, Matsuo M (2002) Electrical properties of polyethylene and carbon black particle blends prepared by gelation/crystallization from solution. Carbon 40:195–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China-Henan Talents Fostering joint Funds (Contract Number U1204507) and National Program on Key Basic Research Project (973 Program, Contract Number 2012CB025903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Li, Z., Liu, X. et al. Temperature-resistivity characteristics of a segregated conductive CB/PP/UHMWPE composite. Colloid Polym Sci 292, 2891–2898 (2014). https://doi.org/10.1007/s00396-014-3334-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3334-5

Keywords

Navigation