Skip to main content
Log in

The collapse and aggregation of thermoresponsive poly(2-oxazoline) gradient copolymers: a time-resolved SANS study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We have investigated the collapse transition of aqueous solutions of gradient copolymers from poly(iso-propyl-2-oxazoline)s (PiPrOx), which contain few hydrophobic moieties (n-nonyl-2-oxazoline (NOx) monomers). We extend our previous investigations (Salzinger et al., Colloid Polym Sci 290:385–400, 2012), where, for the gradient copolymers, an intermediate regime right above the cloud point was identified where small aggregates are predominant. Large aggregates are present in significant numbers only at higher temperatures. To investigate the stability of the intermediate regime, we performed time-resolved small-angle neutron scattering (SANS) experiments during temperature jumps starting below the cloud point and ending in the intermediate regime or in the high-temperature regime. We found that the intermediate regime is stable during the time investigated (∼1 h). Moreover, the collapse of the small aggregates and the surface structure of the large aggregates are related to the number of hydrophobic moieties and the quench depth. The present results elucidate the structural evolution of these polymers and relate them to their final state as well as to their macroscopic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Due to restricted rotation of the methylene group, the signal is generally split into two signals (cis/trans position). Here, the signal at 2.97 ppm is overlapped by the multiplet of the 2-iso-propyl-2-oxazoline signal.

References

  1. Aseyev VO, Tenhu H, Winnik FM (2006) Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. In: Khokhlov AR (ed) Conformation-dependent design of sequences in copolymers, vol 196, Advances in Polymer Science. Springer-Verlag Berlin, Berlin, pp 1–85

    Chapter  Google Scholar 

  2. Hoffman AS (1987) Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release 6:297–306

    Article  CAS  Google Scholar 

  3. Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T (1997) Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release 48:157–164

    Article  CAS  Google Scholar 

  4. Coughlan DC, Quilty FP, Corrigan OI (2004) Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels. J Control Release 98:97–114

    Article  CAS  Google Scholar 

  5. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  6. Hoogenboom R, Schlaad H (2011) Bioinspired poly(2-oxazoline)s. Polymers 3:467–488

    Article  CAS  Google Scholar 

  7. Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M (2012) Poly(2-oxazoline)s—are they more advantageous for biomedical applications than other polymers? Macromol Rapid Commun 33:1648–1662

    Article  CAS  Google Scholar 

  8. Bartel W (1982) Temperature-dependent control element. Germany Patent DE3223771-A,

  9. Kishi R, Hara M, Sawahata K, Osada Y (1991) Conversion of chemical into mechanical energy by synthetic-polymer gels (chemomechanical system). Fundamentals and Biomedical Applications. Plenum Press Div Plenum Publishing Corp, New York, Polymer Gels

    Google Scholar 

  10. Peters EC, Svec F, Fréchet JMJ (1997) Thermally responsive rigid polymer monoliths. Adv Mater 9:630–633

    Article  CAS  Google Scholar 

  11. Arndt KF, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505

    Article  CAS  Google Scholar 

  12. Nykänen A, Nuopponen M, Laukkanen A, Hirvonen SP, Rytelä M, Turunen O, Tenhu H, Mezzenga R, Ikkala O, Ruokolainen J (2007) Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene. Macromolecules 40:5827–5834

    Article  Google Scholar 

  13. Okada Y, Tanaka F (2005) Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 38:4465–4471

    Article  CAS  Google Scholar 

  14. Wang J, Gan D, Lyon LA, El-Sayed MA (2001) Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions. J Am Chem Soc 123:11284–11289

    Article  CAS  Google Scholar 

  15. Ye X, Lu Y, Shen L, Ding Y, Liu S, Zhang G, Wu C (2007) How many stages in the coil-to-globule transition of linear homopolymer chains in a dilute solution? Macromolecules 40:4750–4752

    Article  CAS  Google Scholar 

  16. Tsuboi Y, Yoshida Y, Kitamura N, Iwai K (2009) Phase transition dynamics of fluorescent-labeled poly(N-isopropylacrylamide) in aqueous solution as revealed by time-resolved spectroscopy combined with a laser T-jump technique. Chem Phys Lett 468:42–45

    Article  CAS  Google Scholar 

  17. Lu Y, Ye X, Li J, Li C, Liu S (2011) Kinetics of laser-heating-induced phase transition of poly(N-isopropylacrylamide) chains in dilute and semidilute solutions. J Phys Chem B 115:12001–12006

    Article  CAS  Google Scholar 

  18. Inoue H, Kuwahara S, Katayama K (2013) The whole process of phase transition and relaxation of poly(N-isopropylacrylamide) aqueous solution. Phys Chem Chem Phys 15:3814–3819

    Article  CAS  Google Scholar 

  19. Yushmanov PV, Furó I, Iliopoulos I (2006) Kinetics of demixing and remixing transitions in aqueous solutions of poly(N-isopropylacrylamide): a temperature-jump 1H NMR study. Macromol Chem Phys 207:1972–1979

    Article  CAS  Google Scholar 

  20. Takahashi R, Sato T, Terao K, Qiu XP, Winnik FM (2012) Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules 45:6111–6119

    Article  CAS  Google Scholar 

  21. Adelsberger J, Metwalli E, Diethert A, Grillo I, Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2012) Kinetics of collapse transition and cluster formation in a thermoresponsive micellar solution of P (S-b-NIPAM-b-S) induced by a temperature jump. Macromol Rapid Commun 33:254–259

    Article  CAS  Google Scholar 

  22. Meier-Koll A, Pipich V, Busch P, Papadakis CM, Müller-Buschbaum P (2012) Phase separation in semidilute aqueous poly(N-isopropylacrylamide) solutions. Langmuir 28:8791–8798

    Article  CAS  Google Scholar 

  23. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). Journal of Macromolecular Science: Part A - Chemistry 2:1441–1455

    Article  CAS  Google Scholar 

  24. Winnik FM (1990) Phase-transition of aqueous poly-(N-isopropylacrylamide) solutions—a study by nonradiative energy-transfer. Polymer 31:2125–2134

    Article  CAS  Google Scholar 

  25. Afroze F, Nies E, Berghmans H (2000) Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J Mol Struct 554:55–68

    Article  CAS  Google Scholar 

  26. Shan-Yang L, Ko-Shao C, Liang R-C (1999) Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water. Polymer 40:2619–26242624

    Article  Google Scholar 

  27. Katsumoto Y, Tanaka T, Sato H, Ozaki Y (2002) Conformational change of poly(N-isopropylacrylamide) during the coil-globule transition investigated by attenuated total reflection/infrared spectroscopy and density functional theory calculation. J Phys Chem A 106:3429–3435

    Article  CAS  Google Scholar 

  28. Zhou KJ, Lu YJ, Li JF, Shen L, Zhang GZ, Xie ZW, Wu C (2008) The coil-to-globule-to-coil transition of linear polymer chains in dilute aqueous solutions: effect of intrachain hydrogen bonding. Macromolecules 41:8927–8931

    Article  CAS  Google Scholar 

  29. Gaertner FC, Luxenhofer R, Blechert B, Jordan R, Essler M (2007) Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s. J Control Release 119:291–300

    Article  CAS  Google Scholar 

  30. Adams N, Schubert US (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59:1504–1520

    Article  CAS  Google Scholar 

  31. Han YC, He ZJ, Schulz A, Bronich TK, Jordan R, Luxenhofer R, Kabanov AV (2012) Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol Pharm 9:2302–2313

    CAS  Google Scholar 

  32. Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline) s as polymer therapeutics. Macromol Rapid Commun 33:1613–1631

    Article  CAS  Google Scholar 

  33. Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci 12:926–936

    Article  CAS  Google Scholar 

  34. Huber S, Jordan R (2008) Modulation of the lower critical solution temperature of 2-alkyl-2-oxazoline copolymers. Colloid Polym Sci 286:395–402

    Article  CAS  Google Scholar 

  35. Diab C, Akiyama Y, Kataoka K, Winnik FM (2004) Microcalorimetric study of the temperature-induced phase separation in aqueous solutions of poly(2-isopropyl-2-oxazolines). Macromolecules 37:2556–2562

    Article  CAS  Google Scholar 

  36. Maeda Y, Sakamoto J, Wang SY, Mizuno Y (2009) Lower critical solution temperature behavior of poly(N-(2-ethoxyethyl) acrylamide) as compared with poly(N-isopropylacrylamide). J Phys Chem B 113:12456–12461

    Article  CAS  Google Scholar 

  37. Rehfeldt F, Tanaka M, Pagnoni L, Jordan R (2002) Static and dynamic swelling of grafted poly(2-alkyl-2-oxazoline)s. Langmuir 18:4908–4914

    Article  CAS  Google Scholar 

  38. Foreman MB, Coffman JP, Murcia MJ, Cesana S, Jordan R, Smith GS, Naumann CA (2003) Gelation of amphiphilic lipopolymers at the air-water interface: 2D analogue to 3D gelation of colloidal systems with grafted polymer chains? Langmuir 19:326–332

    Article  CAS  Google Scholar 

  39. Lin PY, Clash C, Pearce EM, Kwei TK, Aponte MA (1988) Solubility and miscibility of poly(ethyl-oxazoline). J Polym Sci Pt B-Polym Phys 26:603–619

    Article  CAS  Google Scholar 

  40. Park JS, Kataoka K (2007) Comprehensive and accurate control of thermosensitivity of poly(2-alkyl-2-oxazoline)s via well-defined gradient or random copolymerization. Macromolecules 40:3599–3609

    Article  CAS  Google Scholar 

  41. Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene-oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714

    Article  CAS  Google Scholar 

  42. Park JS, Kataoka K (2006) Precise Control of lower critical solution temperature of thermosensitive poly(2-isopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline as a hydrophilic comonomer. Macromolecules 39:6622–6630

    Article  CAS  Google Scholar 

  43. Hoogenboom R, Thijs HML, Jochems M, van Lankvelt BM, Fijten MWM, Schubert US (2008) Tuning the LCST of poly(2-oxazoline) s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem Commun 5758–5760

  44. Huber S, Hutter N, Jordan R (2008) Effect of end group polarity upon the lower critical solution temperature of poly(2-isopropyl-2-oxazoline). Colloid Polym Sci 286:1653–1661

    Article  CAS  Google Scholar 

  45. Kempe K, Neuwirth T, Czaplewska J, Gottschaldt M, Hoogenboom R, Schubert US (2011) Poly(2-oxazoline) glycopolymers with tunable LCST behavior. Polym Chem 2:1737–1743

    Article  Google Scholar 

  46. Ye X, Yang J, Ambreen J (2013) Scaling laws between hydrodynamic parameters and molecular weight of linear poly(2-ethyl-2-oxazoline). RSC Advances 3:15108-15113

  47. Zhang N, Luxenhofer R, Jordan R (2012) Thermoresponsive poly(2-oxazoline) molecular brushes by living ionic polymerization: kinetic investigations of pendant chain grafting and cloud point modulation by backbone and side chain length variation. Macromol Chem Phys 213:973–981

    Article  CAS  Google Scholar 

  48. Hoogenboom R, Fijten MWM, Schubert US (2004) Parallel kinetic investigation of 2-oxazoline polymerizations with different initiators as basis for designed copolymer synthesis. J Polym Sci A Polym Chem 42:1830–1840

    Article  CAS  Google Scholar 

  49. Salzinger S, Huber S, Jaksch S, Busch P, Jordan R, Papadakis CM (2012) Aggregation behavior of thermo-responsive poly(2-oxazoline) s at the cloud point investigated by FCS and SANS. Colloid Polym Sci 290:385–400

    Article  CAS  Google Scholar 

  50. Grillo I (2008) Small-Angle neutron scattering and applications in soft condensed matter. In: Borsali R, Pecora R (eds) Soft-matter characterization, vol 2. Springer

  51. Teixeira J (1988) Small-angle scattering by fractal systems. J Appl Crystallogr 21:781–785

    Article  Google Scholar 

  52. Ivanova R, Komenda T, Bonné TB, Lüdtke K, Mortensen K, Pranzas PK, Jordan R, Papadakis CM (2008) Micellar structures of hydrophilic/lipophilic and hydrophilic/fluorophilic poly(2-oxazoline) diblock copolymers in water. Macromol Chem Phys 209:2248–2258

    Article  CAS  Google Scholar 

  53. de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca and London

    Google Scholar 

  54. Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid-Zeitschrift 124:83–114

    Article  CAS  Google Scholar 

  55. Ruland W (1971) Small-angle scattering of 2-phase systems—determination and significance of systematic deviations from Porods Law. J Appl Crystallogr 4:70–73

    Article  Google Scholar 

  56. Koberstein JT, Morra B, Stein RS (1980) Determination of diffuse-boundary thicknesses of polymers by small-angle X-ray-scattering. J Appl Crystallogr 13:34–45

    Article  CAS  Google Scholar 

  57. Schmidt PW (1982) Interpretation of small-angle scattering curves proportional to a negative power of the scattering vector. J Appl Crystallogr 15:567–569

    Article  CAS  Google Scholar 

  58. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900

    Article  CAS  Google Scholar 

  59. Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Heidelberg

    Google Scholar 

  60. Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2011) Formation of a mesoscopic skin barrier in mesoglobules of thermoresponsive polymers. J Am Chem Soc 133:10832–10838

    Article  CAS  Google Scholar 

  61. Aseyev V, Hietala S, Laukkanen A, Nuopponen M, Confortini O, Du Prez FE, Tenhu H (2005) Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST. Polymer 46:7118–7131

    Article  CAS  Google Scholar 

  62. Wu C, Li W, Zhu XX (2004) Viscoelastic effect on the formation of mesoglobular phase in dilute solutions. Macromolecules 37:4989–4992

    Article  CAS  Google Scholar 

  63. Matsuo ES, Tanaka T (1988) Kinetics of discontinuous volume phase-transition of gels. J Chem Phys 89:1695–1703

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the DFG (Pa771/6-2 and Jo287/4-3). The authors thank ILL for allocating beamtime and providing excellent equipment and Robert Luxenhofer for MALDI-ToF measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Papadakis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaksch, S., Schulz, A., Kyriakos, K. et al. The collapse and aggregation of thermoresponsive poly(2-oxazoline) gradient copolymers: a time-resolved SANS study. Colloid Polym Sci 292, 2413–2425 (2014). https://doi.org/10.1007/s00396-014-3333-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3333-6

Keywords

Navigation