Skip to main content
Log in

Preparation and characterization of composite membranes with Brønsted acidic ionic liquid

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly-(vinyl alcohol) (PVA) proton-conducting composite membranes were prepared using succinic acid (SA) as a cross-linking agent and Brønsted acidic ionic liquid (BAIL) as a proton source. The incorporated BAILs resulted in a relatively high proton conductivity compared with PVA/SA membrane without BAILs. The proton conductivities of PVA/SA/BAIL composite membranes increased versus the BAIL content. In addition, the optimal resultant proton conductivity of PVA/SA/BAIL composite membrane under dry condition could reach 0.4 mS/cm at 140 °C, which was higher than that of PVA/sulfosuccinic acid (SSA) composite membrane (0.032 mS/cm), PVA/SSA/5-aminotetrazole membrane (0.022 mS/cm at 130 °C), and PVA/chlorosulfonic acid/glutaraldehyde membrane (0.0585 mS/cm at 90 °C) measured at the same condition. It was notable that the PVA/SA/BAIL composite membranes could reach high thermal stability up to 150 °C, which was higher than that of traditional PVA membranes (below 80 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hill ML, Kim YS, Einsla BR, McGrath JE (2006) Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells. J Membr Sci 283:102–108

    Article  CAS  Google Scholar 

  2. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    Article  CAS  Google Scholar 

  3. Sumner JJ, Creager SE, Ma JJ, DesMarteau DD (1998) Proton conductivity in Nafion®117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane. J Electrochem Sci 145:107–110

    Article  CAS  Google Scholar 

  4. Jung JH, Sridhar V, Oh IK (2010) Electro-active nano-composite actuator based on fullerene-reinforced Nafion. Compos Sci Technol 70:584–592

    Article  CAS  Google Scholar 

  5. Godino MP, Barragán VM, Villaluenga JPG, Izquierdo-Gil MA, Ruiz-Bauzá C, Seoane B (2010) Liquid transport through sulfonated cation-exchange membranes for different water-alcohol solutions. Chem Eng J 162:643–648

    Article  CAS  Google Scholar 

  6. Baek JS, Park JS, Sekhon SS, Yang TH, Shul YG, Choi JH (2010) Preparation and characterisation of non-aqueous proton-conducting membranes with the low content of ionic liquids. Fuel Cells 10:762–769

    Article  CAS  Google Scholar 

  7. Neves LA, Sebastião PJ, Coelhoso IM, Crespo JG (2011) Proton NMR relaxometry study of Nafion membranes modified with ionic liquid cations. J Phys Chem B 115:8713–8723

    Article  CAS  Google Scholar 

  8. Li Q, He R, Jensen JO, Bjerrum JN (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ˚C. J Chem Mater 15:4896–4915

    Article  CAS  Google Scholar 

  9. Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118:287–299

    Article  CAS  Google Scholar 

  10. Suarez S, Kodiweera NKAC, Stallworth P, Yu S, Greenbaum SG, Benicewicz BC (2012) Multinuclear NMR study of the effect of acid concentration on ion transport in phosphoric acid doped poly(benzimidazole) membranes. J Phys Chem B 116:12545–12551

    Article  CAS  Google Scholar 

  11. Tanaka R, Yamamoto H, Kawamura S, Iwase T (1995) Proton conducting behavior of poly(ethylenimine)-H3PO4 systems. Electrochim Acta 40:2421–2424

    Article  CAS  Google Scholar 

  12. Donoso P, Gorecki W, Berthier C, Defendini F, Poinsignon C, Armand MB (1988) NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x. Solid State Ionics 28:969–974

    Article  Google Scholar 

  13. Oliveira L, José NM, Boaventura J, Iglesias M, Mattedi S (2011) Proton conducting polymer membrane using the ionic liquid 2-hydroxyethylammonium lactate for ethanol fuel cells. AIP Conf Proc 1400:149–153

    Article  CAS  Google Scholar 

  14. Wu X, He G, Gu S, Hu Z, Yan X (2010) The state of water in the series of sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes. Chem Eng J 156:578–581

    Article  CAS  Google Scholar 

  15. Wu X, He G, Yu L, Li X (2014) Electrochemical hydrogen pump with SPEEK/CrPSSA semi-interpenetrating polymer network proton exchange membrane for H2/CO2 separation. ACS Sustain Chem Eng 2:75–79

    Article  CAS  Google Scholar 

  16. Bozkurt A, Meyer WH (2001) Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. Solid State Ionics 138:259–265

    Article  CAS  Google Scholar 

  17. Park JS, Park JW, Ruckenstein E (2001) A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/methylcellulose blends. J Appl Polym Sci 80:1825–1834

    Article  CAS  Google Scholar 

  18. Fu J, Qiao JL, Lv H, Ma JX, Yuan XZ, Wang HJ (2010) Alkali doped poly(vinyl alcohol) (PVA) for anion-exchange membrane fuel cells: ionic conductivity, chemical stability and FT-IR characterizations. ECS Trans 25:15–23

    Article  CAS  Google Scholar 

  19. Bartholome C, Miaudet P, Derré A, Maugey M, Roubeau O, Zakri C, Poulin P (2008) Influence of surface functionalization on the thermal and electrical properties of nanotube-PVA composites. Compos Sci Technol 68:2568–2573

    Article  CAS  Google Scholar 

  20. Boroglu MS, Celik SU, Bozkurt A, Boz I (2012) Fabrication and characterization of anhydrous polymer electrolyte membranes based on sulfonated poly(vinyl alcohol) and benzimidazole. Polym Sci Ser A 54:231–239

    Article  CAS  Google Scholar 

  21. Lannoy CF, Jassby D, Davis D, Wiesner MR (2012) A highly electrically conductive polymer-multiwalled carbon nanotube nanocomposite membrane. J Membr Sci 415–416:718–724

    Article  Google Scholar 

  22. Qiao JL, Fu J, Liu LL, Liu YY, Sheng JW (2012) Highly stable hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(acrylamide-co-diallyldimethylammonium chloride) (PVA/PAADDA) for alkaline fuel cells: Effect of cross-linking. Int J Hydrog Energy 37:4580–4589

    Article  CAS  Google Scholar 

  23. Liu CP, Dai CA, Chao CY, Chang SJ (2014) Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells. J Power Sources 249:285–298

    Article  CAS  Google Scholar 

  24. Erdemi H, Akbey Ü, Meyer WH (2010) Conductivity behavior and solid state NMR investigation of imidazolium-based polymeric ionic liquids. Solid State Ionics 181:1586–1595

    Article  CAS  Google Scholar 

  25. Ven EVD, Chairuna A, Merle G, Benito SP, Borneman Z, Nijmeijer K (2013) Ionic liquid doped polybenzimidazole membranes for high temperature peroton exchange membrane fuel cell applications. J Power Sources 222:202–209

    Article  Google Scholar 

  26. Ye H, Huang J, Xu JJ, Kodiweera NKAC, Jayakody JRP, Greenbaum SG (2008) New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J Power Sources 178:651–660

    Article  CAS  Google Scholar 

  27. Tao FR, Song HL, Chou LJ (2011) Hydrolysis of cellulose in SO3H-functionalized ionic liquids. Bioresource Technol 102:9000–9006

    Article  CAS  Google Scholar 

  28. Ohno H, Yoshizawa M, Ogihara W (2003) A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim Acta 48:2079–2083

    Article  CAS  Google Scholar 

  29. Kore R, Srivastava R (2012) Influence of -SO3H functionalization (N-SO3H or N-R-SO3H, where R=alkyl/benzyl) on the activity of Brönsted acidic ionic liquids in the hydration reaction. Tetrahedron Lett 53:3245–3249

    Article  CAS  Google Scholar 

  30. Morancho JM, Salla JM, Cadenato A, Fernández-Francos X, Ramis X, Colomer P, Calventus Y, Ruíz R (2011) Kinetic studies of the degradation of poly(vinyl alcohol)-based proton-conducting membranes at low temperatures. Thermochim Acta 521:139–147

    Article  CAS  Google Scholar 

  31. Boroglu MS, Celik SU, Bozkurt A, Boz I (2013) Proton-conducting blend membranes of crosslinked poly(vinyl alcohol)-sulfosuccinic acid ester and poly(1-vinyl-1,2,4-triazole) for high temperature fuel cells. Polym Eng Sci 53:153–158

    Article  CAS  Google Scholar 

  32. Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) Synthesis and proton conductivity studies of 5-aminotetrazole-doped sulfonated polymer electrolyte membranes. Polym Compos 32:1625–1632

    Article  CAS  Google Scholar 

  33. Anis A, Al-Zahrani SM (2012) Sulfonated PVA/PBI based crosslinked composites towards anhydrous proton conductive polymer electrolyte membranes for fuel cells. Int J Electrochem Sci 7:9174–9185

    CAS  Google Scholar 

  34. Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly(vinyl alcohol) and imidazole. J Membr Sci 375:157–164

    Article  CAS  Google Scholar 

  35. Tsaia CE, Linb CW, Ricka J, Hwanga BJ (2011) Poly(styrene sulfonic acid)/poly(vinyl alcohol) copolymers with semi-interpenetrating networks as highly sulfonated proton-conducting membranes. J Power Sources 196:5470–5477

    Article  Google Scholar 

  36. Gao L, Wang L, Qi T, Chu J, Qu J (2009) Preparation and characterization of titanium tetrachloride-based ionic liquids. J Electrochem Soc 156:49–55

    Article  Google Scholar 

  37. Zhang QG, Sun SS, Pitula S, Liu Q, Welz-Biermann U, Zhang JJ (2011) Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate. J Chem Eng Data 56:4659–4664

    Article  CAS  Google Scholar 

  38. Martineza M, Molmeretb Y, Cointeauxa L, Iojoiua C, Leprêtrea JC, Kissib NE, Judeinsteinc P, Sancheza JY (2010) Proton-conducting ionic liquid-based proton exchange membrane fuel cell membranes: the key role of ionomer-ionic liquid interaction. J Power Sources 195:5829–5839

    Article  Google Scholar 

  39. Lin BC, Qiu LH, Lu JM, Yan F (2010) Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications. Chem Mater 22:6718–6725

    Article  CAS  Google Scholar 

  40. Yang JS, Che QT, Zhou L, He RH, Savinell RF (2011) Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix. Electrochim Acta 56:5940–5946

    Article  CAS  Google Scholar 

  41. Zhang L, Chae SR, Hendren Z, Park JS, Wiesner MR (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204–206:87–97

    Article  Google Scholar 

  42. Li QF, Pan C, Jensen JO, Noye P, Bjerrum NJ (2007) Cross-linked polybenzimidazole membranes for fuel cells. Chem Mater 19:350–352

    Article  CAS  Google Scholar 

  43. Bosnjakovic A, Schlick S (2004) Nafion perfluorinated membranes treated in fenton media: radical species detected by ESR spectroscopy. J Phys Chem B 108:4332–4337

    Article  CAS  Google Scholar 

  44. Yamaguchi T, Zhou H, Nakazawa S, Hara N (2007) An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells. Adv Mater 19:592–596

    Article  CAS  Google Scholar 

  45. Selvam L, Chen FF, Wang F (2010) Solvent effects on blue shifted improper hydrogen bond of C-H⋯O in deoxycytidine isomers. Chem Phy Lett 500:327–333

    Article  CAS  Google Scholar 

  46. Li AY (2007) Chemical origin of blue- and red shifted hydrogen bonds: Intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation. J Chem Phys 126:1–9

    Google Scholar 

  47. Maes AM, Pandey TP, Vandiver MA, Lundquist LK, Krosovsky A, Liberatore MW, Seifert S, Herring AM (2013) Preparation and characterization of an alkaline anion exchange membrane from chlorinated poly(propylene) aminated with branched poly(ethyleneimine). Electrochim Acta 110:260–266

    Article  CAS  Google Scholar 

  48. Noda A, Susan MABH, Kudo K, Mit-sushima S, Hayamizu K, Watanabe M (2003) Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B 107:4024–4033

    Article  CAS  Google Scholar 

  49. Matsuoka H, Nakamoto H, Susan MABH, Watanabe M (2005) Brønsted acid-base and-polybase complexes as electrolytes for fuel cells under non-humidifying conditions. Electrochim Acta 50:4015–4021

    Article  CAS  Google Scholar 

  50. Wang JTW, Hsu SLC (2011) Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochim Acta 56:2842–2846

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Basic Research Program (2013CB834505), specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120131130003) and the Shandong Provincial Natural Science Foundation, China (ZR2012BZ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Gao, H., Lu, F. et al. Preparation and characterization of composite membranes with Brønsted acidic ionic liquid. Colloid Polym Sci 292, 2831–2839 (2014). https://doi.org/10.1007/s00396-014-3324-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3324-7

Keywords

Navigation