Skip to main content
Log in

Stability, rheological, magnetorheological and volumetric characterizations of polymer based magnetic nanofluids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The Fe3O4 nanoparticles and Fe3O4 nanoparticles coated with oleic acid have been dispersed in base fluid of poly(ethylene glycol) (PEG). Stability and particle size distribution of these nanofluids have been studied by result analysis of UV–Vis spectroscopy, zeta potential and dynamic light scattering. Blue shift of UV–Vis spectra has been related to quantum effects such as band gap enlargement with particle size decreasing and also to effect of oleic acid on the ultraviolet wavelength. Flow behavior and suspension structure of Fe3O4 nanoparticles dispersed in PEG have been determined by rheological properties. Viscosity values of Fe3O4-PEG nanofluid as a function of temperature have also been investigated. The chain-like structure of Fe3O4 nanoparticles coated with oleic acid in base fluid of PEG has been verified by measuring the magnetorheological properties. The effect of temperature on magnetorheological properties of Fe3O4 nanoparticles coated with oleic acid has also been investigated in base fluid of PEG. The volumetric properties of Fe3O4-PEG and Fe3O4 coated with oleic acid–PEG nanofluids and PEG–oleic acid solution have also been measured at different temperatures to specify the suspension structure and also interactions of Fe3O4, PEG and oleic acid molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Viota JL, Gozález-Caballero F, Durán JDG, Delgado AV (2007) Study of the colloidal stability of concentrated bimodal magnetic fluids. J Colloid Interface Sci 309:135–139

    Article  CAS  Google Scholar 

  2. Alexious C, Arnold W, Hulin P, Klein RJ, Renz H, Parak FG, Bergemann C (2001) Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magn Magn Mater 225:187–193

    Article  Google Scholar 

  3. Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Article  CAS  Google Scholar 

  4. Mykhaylyk O, Cherchenko A, Ilkin A, Dudchenko N, Ruditsa V (2001) Glial brain tumor targeting of magnetite nanoparticles in rats. J Magn Magn Mater 225:241–247

    Article  CAS  Google Scholar 

  5. Shima PD, Philip J, Raj B (2010) Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. Phys Chem C 114:18825–18833

    Article  CAS  Google Scholar 

  6. Hosseini M, Ghader S (2010) A model for temperature and particle volume fraction effect on nanofluid viscosity. J Mol Liq 153:139–145

    Article  CAS  Google Scholar 

  7. Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal Fluid Sci 30:109–116

    Article  CAS  Google Scholar 

  8. Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89:023123

    Article  Google Scholar 

  9. Xu XQ, Shen H, Xu JR, Xie MQ, Li XJ (2006) The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate. Appl Surf Sci 253:2158–2164

    Article  CAS  Google Scholar 

  10. Vékás L, Bica D, Marinica O (2006) Magnetic nanofluids stabilized with various chain length surfactants. Roman Rep Phys 58:257–267

    Google Scholar 

  11. Bica D, Vékás L, Avdeev MV, Marinica O, Socoliuc V, Bălăsoiu M, Garamus VM (2007) Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater 311:17–21

    Article  CAS  Google Scholar 

  12. Vékás L, Raşa M, Bica D (2000) Physical properties of magnetic fluids and nanoparticles from magnetic and magneto-rheological measurements. J Colloid Interface Sci 231:247–254

    Article  Google Scholar 

  13. Vékás L, Bica D, Avdeev MV (2007) Magnetic nanoparticles and concentrated magnetic nanofluids: synthesis, properties and some applications. China Particuol 5:43–49

    Article  Google Scholar 

  14. Lee HH, Yamaoka S, Murayama N, Shibata J (2007) Dispersion of Fe3O4 suspensions using sodium dodecylbenzene sulphonate as dispersant. Mater Lett 61:3974–3977

    Article  CAS  Google Scholar 

  15. Philip J, Shima PD, Raj B (2007) Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett 91:203108

    Article  Google Scholar 

  16. Shima PD, Philip J, Raj B (2010) Influence of aggregation on thermal conductivity in stable and unstable nanofluids. Appl Phys Lett 97:153113

    Article  Google Scholar 

  17. Shima PD, Philip J, Raj B (2009) Magnetically controllable nanofluid with tunable thermal conductivity and viscosity. Appl Phys Lett 95:133112

    Article  Google Scholar 

  18. Abareshi M, Goharshadi EK, Zebarjad SM, Fadafan HK, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 332:3895–3901

    Article  Google Scholar 

  19. Huminic G, Huminic A, Morjan I, Dumitrache F (2011) Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. Int J Heat Mass Transfer 54:656–661

    Article  CAS  Google Scholar 

  20. Patel R (2012) Effective viscosity of magnetic nanofluids through capillaries. Phys Rev E 85:026316

    Article  Google Scholar 

  21. Zafarani-Moattar MT, Majdan-Cegincara R (2012) Effect of temperature on volumetric and transport properties of nanofluids containing ZnO nanoparticles poly(ethylene glycol) and water. J Chem Thermodyn 54:55–67

    Article  CAS  Google Scholar 

  22. Alphonse P, Bleta R, Soules R (2009) Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. J Colloid Interface Sci 337:81–87

    Article  CAS  Google Scholar 

  23. Zhang H, Wu Q, Lin J, Chen J, Xu Z (2010) Thermal conductivity of polyethylene glycol nanofluids containing carbon coated metal nanoparticles. J Appl Phys 108:124304

    Article  Google Scholar 

  24. Reed JS (1995) Principles of ceramics processing. Wiley, New York

    Google Scholar 

  25. Shih WY, Shih W-H, Aksay IA (1999) The elastic and yield behavior of strongly flocculated colloids. J Am Ceram Soc 82:616–624

    Article  CAS  Google Scholar 

  26. Tseng WJ, Lin KC (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng, A 355:186–192

    Article  Google Scholar 

  27. Tamjid E, Guenther BH (2010) Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol. Powder Technol 197:49–53

    Article  CAS  Google Scholar 

  28. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymer liquids, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  29. Zafarani-Moattar MT, Majdan-Cegincara R (2011) New excess Gibbs energy equation for modeling the thermodynamic and transport properties of polymer solutions and nanofluids at different temperatures. Ind Eng Chem Res 50:8245–8262

    Article  CAS  Google Scholar 

  30. Barnes HA, Hutton JE, Walters FRSK (1989) An introduction to rheology. Elsevier, Amsterdam

  31. Wooding A, Kilner M, Lambrick DB (1991) Studies of the double surfactant layer stabilization of water-based magnetic fluids. J Colloid Interface Sci 144:236–242

    Article  CAS  Google Scholar 

  32. Hu Z, Oskam G, Penn RL, Pesika N, Searson PC (2003) The influence of anion on the coarsening kinetics of ZnO nanoparticles. J Phys Chem B 107:3124–3130

    Article  CAS  Google Scholar 

  33. Wong EM, Hoertz PG, Liang CJ, Shi BM, Meyer GJ, Searson PC (2001) Influence of organic capping ligands on the growth kinetics of zno nanoparticles. Langmuir 17:8362–8367

    Article  CAS  Google Scholar 

  34. Pavia D L, Lampman GM, Kriz GS (1996) Introduction to Spectroscopy, A Guide for students of organic chemistry, 2nd edn. Harcourt Brace College Publishers, Fort Worth

  35. Staughan BP, Walker S (1975) Spectroscopy, volume three. Chapman and Hall, John Wiley, New York

    Google Scholar 

  36. Wu S, Zhu D, Li X, Li H, Lei J (2009) Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta 483:73–77

    Article  CAS  Google Scholar 

  37. Philip J, Shima PD, Raj B (2008) Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19:305706

    Article  Google Scholar 

  38. Parvin K, Ma J, Ly J, Sun XC, Nikles DE, Sun K, Wang LM (2004) Synthesis and magnetic properties of monodisperse Fe3O4 nanoparticles. J Appl Phys 95:7121–7123

    Article  CAS  Google Scholar 

  39. Mutalik V, Manjeshwar LS, Sairam M, Aminabhavi TM (2006) Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K. J Chem Thermodyn 38:1620–1628

    Article  CAS  Google Scholar 

  40. Valtz A, Teodorescu M, Wichterle I, Richon D (2004) Liquid densities and excess molar volumes for water + diethylene glycolamine, and water, methanol, ethanol, 1-propanol + triethylene glycol binary systems at atmospheric pressure and temperatures in the range of 283.15–363.15 K. Fluid Phase Equilib 215:129–142

    Article  CAS  Google Scholar 

  41. Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348

    Article  Google Scholar 

  42. Ott JB, Stouffer CE, Cornett GV, Woodfield BF, Wirthlin RC, Christensen JJ, Dieters JA (1986) Excess enthalpies for (ethanol + water) at 298.15 K and pressures of 0.4, 5, 10, and 15 MPa. J Chem Thermodyn 18:1–12

    Article  CAS  Google Scholar 

  43. Singh PP, Nikam RK, Sharma SP, Aggarwal S (1984) Molar excess volumes of ternary mixtures of nonelectrolytes. Fluid Phase Equilib 18:333–334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the University of Tabriz Research Council and the Iranian Nanotechnology Initiative Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Taghi Zafarani-Moattar.

Electronic supplementary material

ESM 1

(DOCX 1024 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafarani-Moattar, M.T., Majdan-Cegincara, R. Stability, rheological, magnetorheological and volumetric characterizations of polymer based magnetic nanofluids. Colloid Polym Sci 291, 1977–1987 (2013). https://doi.org/10.1007/s00396-013-2936-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2936-7

Keywords

Navigation