Skip to main content
Log in

Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(isobutylene-co-isoprene) (IIR)/graphene and cloisite10A nanocomposites were prepared successfully and the resulting mechanical, rheological and barrier properties were carefully evaluated and compared. Chemical treatments like maleic anhydride grafting were used to improve the dispersion of the clay in the IIR matrix. Blends with different loading (20, 40, 60, and 80 %) of maleic anhydride grafted poly(isobutylene-co-isoprene) (MA-g-IIR) and IIR were made to maintain a balance between the beneficial polarity induced by MA grafting and the inevitable decrease in molecular weight (due to chain scission) induced by the free radical grafting process. The highest moduli, tensile strength and elongation at break were achieved in the case of a 60:40 ratio of MA-g-IIR (grafting degree 0.75)/IIR mixture with 5 phr of cloisite 10A. IIR/graphene nanocomposites exhibited higher reinforcement (Young’s moduli) and lower gas permeability compared to the optimized clay nanocomposites with same weight percentage. The filler–elastomer and filler–filler interactions deduced from rheology, stress relaxation and Payne effect experiments emphasize the reinforcing ability in IIR/graphene and MA-g-IIR/clay. XRD, SEM and TEM results further substantiated the results from the obtained micro structure of the nanocomposites. The improved performances of IIR/MA-g-IIR/clay and IIR/graphene were successfully correlated with interactions between the filler platelets and elastomer chains occurring in the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kamigaito O, Fukushima Y, Doi H (1984) Composite material composed of clay mineral and organic high polymer and method for producing the same. US patent 4,472,538

  2. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189

    Article  CAS  Google Scholar 

  3. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Sorption of water in nylon 6–clay hybrid. J Appl Polym Sci 49:1259–1264

    Article  CAS  Google Scholar 

  4. Van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  5. LeBaron P, Wang Z, Pinnavaia T (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29

    Article  CAS  Google Scholar 

  6. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layers silicate nanocomposites as high performance ablative material. Appl Clay Sci 15:67–92

    Article  CAS  Google Scholar 

  7. Kim J, Oh T, Lee D (2003) Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates. Polym Int 52:1203–1208

    Article  Google Scholar 

  8. Kim J, Oh T, Lee D (2003) Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay. Polym Int 52(7):1058–1063

    Article  CAS  Google Scholar 

  9. Zhang H, Zhang Y, Peng Z, Zhang Y (2004) Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites. Polym Test 23:217–223

    Article  Google Scholar 

  10. Gatos KG, Sawanis NS, Apostolov AA, Thomann R, Karger-Kocsis J (2004) Nanocomposite formation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite as a function of the intercalant type. Macromol Mater Eng 289:1079–1086

    Article  CAS  Google Scholar 

  11. Schon F, Thomanm R, Gronski W (2002) Shear controlled morphology of rubber/organoclay nanocomposites and dynamic mechanical analysis. Macromol Symp 189(1):105–110

    Article  CAS  Google Scholar 

  12. Gatos KG, Thomanm R, Karger-Kocsis J (2004) Characteristics of ethylenepropylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym Int 53:1191–1197

    Article  CAS  Google Scholar 

  13. Zhang H, Zhang Y, Peng Z, Zhang Y (2004) Influence of the caly modification and compatibilizer on the structure and mechanical properties of ethtlene–propylene–diene rubber/montmorillonite composites. J Appl Polym Sci 92(1):638–646

    Article  Google Scholar 

  14. Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47(11):1956–1974

    Article  CAS  Google Scholar 

  15. Yanhu Z, Jinkui W, Hesheng X, Ning Y, Guoxia F, Guiping Y (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296(7):590–602

    Article  Google Scholar 

  16. Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochem Acta 442:74–77

    Article  CAS  Google Scholar 

  17. Huiqin L, Shuxin L, Kelong L, Liangrui X, Kuisheng W, Wenli G (2011) Study on modified graphene/butylrubber nanocomposites: I. Preparation and characterization. Polym Eng Sci 51(11):2254–2260

    Article  Google Scholar 

  18. Song SH, Jeong HK, Kang YG (2010) Preparation and characterization of exfoliated graphite and its styrene butadiene rubber nanocomposites. J Ind Eng Chem 16:1059–1065

    Article  CAS  Google Scholar 

  19. Prud'Homme R, Ozbas B, Aksay I, Register R, Douglas A (2010) Functional graphene rubber nanocomposites. US patent 7,745,528 B2

  20. Xin B, Chaoying W, Yong Z, Yinghao Z (2011) Reinforcement of hydrogenated carboxylatednitrile–butadiene rubber with exfoliated graphene oxide. Carbon 49:1608–1613

    Article  Google Scholar 

  21. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. J Chem Soc Rev 39:3157–3180

    Article  CAS  Google Scholar 

  22. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  23. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  24. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  25. Owen CC, Soyoung K, Cynthia P, John MT, SonBinh TN (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22:4759–4763

    Article  Google Scholar 

  26. Bharadwaj RK (2001) Modelling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192

    Article  CAS  Google Scholar 

  27. Cussler EL, Hughes SE, Ward WJ, Aris R (1988) Barrier membranes. J Membr Sci 38:161–174

    Article  CAS  Google Scholar 

  28. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci 5:929–942

    Google Scholar 

  29. Stephen R, Varghese S, Joseph K, Oommen Z, Thomas S (2006) Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends. J Membr Sci 282:162

    Article  CAS  Google Scholar 

  30. Meera AP, Thomas SP, Thomas S (2012) Effect of organoclay on the gas barrier properties of natural rubber nanocomposites. Polym Compos 33:524–531

    Article  CAS  Google Scholar 

  31. Saritha A, Joseph K, Thomas S, Muraleekrishnan R (2012) The role of surfactant type and modifier concentration in tailoring the properties of chlorobutyl rubber/organo clay nanocomposites. J Appl Polym Sci 124:4590–4597

    CAS  Google Scholar 

  32. Saritha A, Joseph K, Thomas S, Muraleekrishnan R (2012) Chlorobutyl rubber nanocomposites as effective gas and VOC barrier materials. Compos A Appl Sci Manuf 43:864–870

    Article  CAS  Google Scholar 

  33. Hofmann W (1989) Rubber technology handbook, 2nd edn. Hanser Publishers, New York

    Google Scholar 

  34. Qu L, Huang G, Wu J, Tang Z (2007) Damping mechanism of chlorobutyl rubber and phenolic resin vulcanized blends. J Mater Sci 42:7256–7262

    Article  CAS  Google Scholar 

  35. Makoto K, Azusa T, Hiromitsu T, Amritsu U, Isamu I (2006) Preparation and properties of isobutylene–isoprene rubber–clay nanocomposites. J Polym Sci A Polym Chem 44:1182–1188

    Article  Google Scholar 

  36. Liang Y, Ma J, Lu Y, Wu Y, Zhang L, Mai Y (2005) Effects of heat and pressure on intercalation structures of isobutylene/isoprene rubber clay nanocomposites. J Polym Sci B Polym Phys 43:2653–2664

    Article  CAS  Google Scholar 

  37. Sridhar V, Tripathy DK (2006) Barrier properties of chlorobutyl nanoclay composites. J Appl Polym Sci 101:3630–3637

    Article  CAS  Google Scholar 

  38. Ranimol S, Ranaganathaiah C, Siby V, Kuruvilla J, Thomas S (2006) Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47:858–870

    Article  Google Scholar 

  39. Takahashi S, Goldberg HA, Feeney CA, Karim DP, Farrell M, O’Leary K, Paul DR (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47:3083–3093

    Article  CAS  Google Scholar 

  40. Gatos G, Százdi L, Pukánszky B, Karger-Kocsis J (2005) Controlling the deintercalation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite nanocomposites by curing with peroxide. Macromol Rapid Commun 26:915–919

    Article  CAS  Google Scholar 

  41. Liang YR, Wang YQ, Wu YP, Lu YL, Zhang HF, Zhang LQ (2005) Preparationand properties of isobutylene –isoprene (IIR)/clay nanocomposites. Polym Test 24:12–17

    Article  Google Scholar 

  42. Yurong L, Weiliang C, Zhao L, Yiqing W, Youping W, Liqun Z (2008) A new strategy to improve the gas barrier property ofisobutylene–isoprene rubber/clay nanocomposites. Polym Test 27:270–276

    Article  Google Scholar 

  43. Samadi A, Kashani MR (2010) Effects of organo-clay modifier on physical–mechanical properties of butyl-based rubber nano-composites. J Appl Polym Sci 116:2101–2109

    CAS  Google Scholar 

  44. Maiti M, Sadhu S, Bhowmick AK (2005) Effect of carbon black on properties of rubber nanocomposites. J Appl Polym Sci 96:443–451

    Article  CAS  Google Scholar 

  45. Salahuddin N, Akelah A (2002) Synthesis and characterization of poly(styrene-maleic anhydride)–montmorillonite nanocomposite. Polym Adv Technol 13:339–345

    Article  CAS  Google Scholar 

  46. Li XC, Ha CS (2003) Nanostructure of EVA/organoclay nanocomposites: effects of kinds of organoclays and grafting of maleic anhydride on to EVA. J Appl Polym Sci 87(12):1901–1909

    Article  CAS  Google Scholar 

  47. Gunberg PF, Ridgewood NJ (1958) Maleic anhydride modified butyl rubber. US Patent 2,845,403

  48. Daniela CM, Dmitry VK, Jacob MB, Alexander S, Zhengzong S, Alexander S, Lawrence BA, Wei L, James MT (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  Google Scholar 

  49. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    Article  CAS  Google Scholar 

  50. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  51. Tosaka M, Kawakami D, Senoo K, Kohjiya S, Ikeda Y, Toki S, Hsiao BS (2006) Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue. Macromolecules 39:5100–5105

    Article  CAS  Google Scholar 

  52. Fordiani F, Aubry T, Grohens Y (2009) Structural changes evidenced by rheology in PP-g-MA nanocomposites during oxidative ageing. J Appl Polym Sci 114(6):4011–4019

    Article  CAS  Google Scholar 

  53. Heinrich G, Klüppel M (2002) Recent advances in the theory of filler networking in elastomers. Adv Polym Sci 160:1–44

    Article  CAS  Google Scholar 

  54. Okamoto M (2006) Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology. Mater Sci Technol 22(7):756–779

    Article  CAS  Google Scholar 

  55. Li J, Zhou C, Wang G, Yu W, Tao Y, Liu Q (2003) Preparation and linear rheological behavior of polypropylene–montmorillonite nanocomposites. Polym Compos 24:323–331

    Article  Google Scholar 

  56. Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183

    Article  CAS  Google Scholar 

  57. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  58. Mullins L, Tobinn R (1954) Theoretical model for the elastic behaviour of filler-reinforced vulcanised rubbers. Proc. 3rd Rubber Technology Conference 397–412

  59. Asaletha R, Bindu P, Aravind I, Meera AP, Valsaraj SV, Yang W, Thomas S (2008) Stress-relaxation behavior of natural rubber/polystyrene and natural rubber/polystyrene/natural rubber-graft-polystyrene blends. J Appl Polym Sci 108(2):904

    Article  CAS  Google Scholar 

  60. Meera AP, Said S, Grohens Y, Luyt AS, Thomas S (2009) Tensile stress relaxation studies of TiO2 and nanosilica filled natural rubber composites. Ind Eng Chem Res 48:3410

    Article  CAS  Google Scholar 

  61. Jyotishkumar P, Pionteck J, Hassler R, George SM, Cvelbar U, Thomas S (2011) Studies on stress relaxation and thermomechanical properties of poly(acrylonitrile-butadiene-styrene) modified epoxy–amine systems. Ind Eng Chem Res 50(8):4432–4440

    Article  CAS  Google Scholar 

  62. Andrews E (1963) Reinforcing of rubber by fillers. Rubber Chem Technol 36:325–336

    Article  Google Scholar 

  63. Chih-Cheng P, Gopfert A, Drechsler M, Abetz V (2005) “Smart” silica–rubber nanocomposites in virtue of hydrogen bonding interaction. Polym Adv Technol 16:770

    Article  Google Scholar 

  64. Maier PG, Göritz D (1996) Molecular interpretation on the Payne effect. Kautsch Gummi Kunstst 49:18

    CAS  Google Scholar 

  65. Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997

    Article  CAS  Google Scholar 

  66. Bhattacharyya S, Sinturel C, Bahloul O, Thomas S, Salvetat J (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46(7):1037

    Article  CAS  Google Scholar 

  67. Nilson LE, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  68. Hailin C, Maciej R, Brian FT, Youqing S (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291

    Article  Google Scholar 

  69. Soney CG, Ninan KN, Sabu T (2001) Permeation of nitrogen and oxygen gases through styrene–butadiene rubber, natural rubber and styrene–butadiene rubber/natural rubber blend membranes. Eur Polym J 37:183–191

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the French Ministry for Research and the Brittany Region and the Department of Science and Technology, India, for the financial support. We also thank the Nanofunc Program of the Pays de la Loire Region for helping in the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadasivuni, K.K., Saiter, A., Gautier, N. et al. Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291, 1729–1740 (2013). https://doi.org/10.1007/s00396-013-2908-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2908-y

Keywords

Navigation