Skip to main content
Log in

The influence of chondroitin sulfate on composite multilamellar liposomes containing chitosan

Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A composite multilamellar liposome containing chitosan attached to the inside and outside of the membrane as well as an opposite charged polyelectrolyte, chondroitin, adsorbed at the surface was developed. Not only the chitosan/chondroitin ratio but also the concentration of them were varied. The structure and superficial properties of the liposomes were studied through a combination of light scattering, zeta potential, and small-angle X-rays scattering techniques. While the chitosan/chondroitin ratio affected the superficial charge distributions, the concentration of polyelectrolytes affected the structural properties of the liposomes, as the rigidity of the phospholipid layers. The superficial charge of the resultant composite liposome was influenced by the type and concentration of the polyelectrolyte. Information about the charge density could be obtained by the treatment of zeta potential data, and it was used to estimate the amount of chondroitin adsorbed to the liposome surface. Applying the modified Caillé theory to the X-rays scattering curves, information about the internal structure of the liposomes was accessed. The ability to control the properties of composite multilamellar liposomes is an important issue when they have to be applied as a biomaterial device component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Taylor KMP, Morris RM (1995) Thermal analysis of phase transition. Behaviour in liposomes. Termochim Acta 248:289–301

    Article  CAS  Google Scholar 

  2. Lasic DD (1988) The mechanism of vesicle formation. Biochem J 256:1–11

    CAS  Google Scholar 

  3. Lasic DD (1998) Novel applications of liposomes. Tibtech 16:207–321

    Article  Google Scholar 

  4. Pabst G (2006) Global properties of biomimetic membranes: perspectives on molecular features. Biophys Rev Lett 1:57–84

    Article  CAS  Google Scholar 

  5. Sawant RR, Vaze OS, Rockwell K, Torchilin VP (2010) Palmitoyl ascorbate-modified liposomes as nanoparticle platform for ascorbate-mediated cytotoxicity and paclitaxel co-delivery. Eur J Pharm Biopharm 75:321–326

    Article  CAS  Google Scholar 

  6. Betz G, Aeppli A, Menshutina N, Leuenberger H (2005) In vivo comparison of various liposome formulations for cosmetic application. Int J Pharm 269:44–54

    Article  Google Scholar 

  7. Mertins O, Dimova R (2011) Binding of chitosan to phospholipid vesicles studied with isothermal titration calorimetry. Langmuir 27:5506–5515

    Article  CAS  Google Scholar 

  8. Ma M, Bong D (2011) Directed peptide assembly at the lipid–water interface cooperatively enhances membrane binding and activity. Langmuir 27:1480–1486

    Article  CAS  Google Scholar 

  9. Quemeneur F, Rinaudo M, Maret G, Pépin-Donat B (2010) Decoration of lipid vesicles by polyelectrolytes: mechanism and structure. Soft Matter 6:4471–4481

    Article  CAS  Google Scholar 

  10. Bhattarai N, Gunn J, Zhang M (2009) Chitosan-based hydrogels for controlled localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    Article  Google Scholar 

  11. Lee J-H, Gustin JP, Chen T, Payne GF, Raghavan SR (2005) Vesicle-biopolymer gels: networks of surfactant vesicles connected by associating biopolymers. Langmuir 21:26–33

    Article  CAS  Google Scholar 

  12. Notin L, Viton C, David L, Alcouffe P, Rochas C, Domard A (2006) Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: influence of the dry-jet-stretching step and ageing. Acta Biomater 2:387–402

    Article  Google Scholar 

  13. Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765–772

    Article  CAS  Google Scholar 

  14. Mertins O, Cardoso MB, Pohlmann AR, Silveira NP (2006) Structural evaluation of phospholipidic nanovesicles containing small amounts of chitosan. J Nanosci Nanotechnol 6:2425

    Article  CAS  Google Scholar 

  15. Mertins O, Lionzo M, Micheletto Y, Pohlmann A, Silveira NP (2009) Chitosan effect on the mesophase behavior of phosphatidylcholine supramolecular systems. Mat Sci Eng C 29:463–469

    Article  CAS  Google Scholar 

  16. Henriksen I, Smistad G, Karlsen (1994) Interactions between liposomes and chitosan. J Int J Pharm 101:227

    Article  CAS  Google Scholar 

  17. Chen Y-L, Lee HP, Chan HY, Sung L-Y, Chen H-C, Hu Y-C (2007) Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials 28:2294–2305

    Article  CAS  Google Scholar 

  18. Larsson B, Nilsson M, Tjalve H (1981) The binding of inorganic and organic cations and H+ to cartilage in vitro. Carbohydr Polym 30:2963–2970

    CAS  Google Scholar 

  19. Denuziere A, Ferrier D, Domard A (1996) Chitosan–chondroitin sulfate and chitosan–hyaluronate polyelectrolyte complexes. Physico-chemical aspects. Carbohydr Polym 29:317–323

    Article  CAS  Google Scholar 

  20. Rinaudo M, Quemeneur F, Pépin-Donat B (2009) Stabilization of liposomes by polyelectrolytes: mechanism of interaction and role of experimental conditions. Macromol Symp 278:67–79

    Article  CAS  Google Scholar 

  21. Mertins O, Sebben M, Schneider PH, Pohlmann AR, da Silveira NP (2008) Caracterização da pureza de fosfatidilcolina da soja através de RMN de 1H e de 31P. Quim Nova 31(7):1856–1859

    Article  CAS  Google Scholar 

  22. Ceppi P, Colombo S, Francolini M, Raimondo F, Borgese N, Masserini M (2005) Two tail-anchored protein variants, differing in transmembrane domain length and intracellular sorting, interact differently with lipids. Proc Natl Acad Sci U S A 102:16269–16274

    Article  CAS  Google Scholar 

  23. Hammersley AP (1997) ESRF internal report, ESRF 97HA02T, fit 2D: an introduction and overview. http://www.esrf.eu/computing/scientific/FIT2D/FIT2D_INTRO/fit2d.html. Accessed 23 July 2012

  24. Adrhammar M, Lincoln P, Nordén B (2002) Invisible liposomes: refractive index matching with sucrose enables flow dichroism assessment of peptide orientation in lipid vesicle membrane. PNAS 99(24):15313–15317

    Article  Google Scholar 

  25. Musale DA, Kumar A, Pleizier G (1999) Formation and characterization of poly(acrylonitrile)/chitosan composite ultrafiltration membranes. J Membr Sci 154:163–173

    Article  CAS  Google Scholar 

  26. Dowson D, Priest M, Dalmaz G, Lubrecht AA (2004) Life cycle tribology. Proceedings of the 31st Leeds-Lyon symposium on tribology held at Trinity and All Saints College, Horsforth, Leeds, UK, September 48 (391). In: Briscoe BJ (ed) Tribology and interface engineering series. Elsevier, Amsterdam

    Google Scholar 

  27. Matos C, Castro B, Gameiro P, Lima JLF, Reis S (2004) Zeta-potential measurements as a tool to quantify the effect of charged drugs on the surface potential of egg phosphatidylcholine liposomes. Langmuir 20:369–377

    Article  CAS  Google Scholar 

  28. Seeling J, Macdonald PM, Sherer PG (1987) Phospholipid head group as sensors of electric charge in membranes. Biochemistry 26(24):7535–7541

    Article  Google Scholar 

  29. Mertins O, Silveira NP, Pohlmann AR, Schroder AP, Marques CM (2009) Electroformation of giant vesicles from an inverse phase precursor. Biophys J 96:2719–2726

    Article  CAS  Google Scholar 

  30. Guo J, Ping Q, Jiang G, Huang L, Tong Y (2003) Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm 260:167–173

    Article  CAS  Google Scholar 

  31. Zhang R, Sun W, Tristram-Nagle S, Headrick RL, Suter RM, Nagle JF (1995) Critical fluctuations in membranes. Phys Rev Lett 74(14):2832–2835

    Article  CAS  Google Scholar 

  32. Pabst G, Koschuch R, Pozo-Navas B, Rappolt M, Lohner K, Laggner P (2003) Structural analysis of weakly ordered membrane stacks. J Appl Cryst 36:1378–1388

    Article  CAS  Google Scholar 

  33. Bates FS, Cohen RE, Berney CV (1982) Small-angle neutron scattering determination of macrolattice structure in a polystyrene-polybutadiene diblock copolymer. Macromolecules 15:589

    Article  CAS  Google Scholar 

  34. Safinya CR, Roux D, Smith SS, Sinha SK, Dimon P, Clark NA, Bellocq AM (1986) Steric interaction is a model multimembrane system: a synchrotron X-ray study. Phys Rev Lett 57(21):2718–2721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank LNLS for SAXS measurements and Rede de Nanocosméticos/MCT and CNPq for financial support. The author would like to thank Prof. R. Itri for her valuable helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Z. Lionzo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lionzo, M.I.Z., Muniz, E.C. & da Silveira, N.P. The influence of chondroitin sulfate on composite multilamellar liposomes containing chitosan. Colloid Polym Sci 291, 1057–1064 (2013). https://doi.org/10.1007/s00396-012-2828-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2828-2

Keywords

Navigation