Skip to main content
Log in

Crystal structure and thermal behavior of cold-crystallized poly(trimethylene terephthalate)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The structure and thermal behavior of cold-crystallized poly(trimethylene terephthalate) (PTT) are revealed in detail by DSC, AFM, TEM, and WAXD as well as in situ FTIR and SAXS techniques. There is no effect of crystallization temperature and initial state on the crystal modification, yet the morphology is strongly affected by these two factors. First, the small rod-like lamellae for PTT are obtained during the cold crystallization instead of the spherulites formed in the melt crystallization. Second, the edge-on lamellar orientation in thin films is identified during the cold crystallization. The thickness and the lateral width of rod-like lamellae get larger and larger with increasing crystallization temperature. Thin lamellar crystals assemble randomly when the cold-crystallization temperature is lower, while lamellar stacks composed of thicker lamellae are observed when the PTT was annealed at elevated temperature. Moreover, for the cold-crystallized PTT, the final melting temperature does not vary with the crystallization temperature. This phenomenon is explained by the structural improvement during the heating process. For the cold-crystallized PTT sample at lower temperature, three transitions occur when it is heated again: the relaxation of the rigid amorphous phase, the reorganization of molecules in the intermediate phase, and then the melt–recrystallization behavior. Those transitions finally lead to thicker lamellae besides a higher crystallinity before the final fusion. Therefore, the final melting peak of these lamellae is at the same temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jakeways R, Ward IM, Wilding MA, Hall IH, Desborough IJ, Pass MG (1975) J Polym Sci Polymer Phys Ed 13:799

    Article  CAS  Google Scholar 

  2. Ward IM, Wilding MA, Brody H (1976) J Polym Sci Polymer Phys Ed 14:263

    Article  CAS  Google Scholar 

  3. Wu G, Li HW, Wu YQ, Cuculo JA (2002) Polymer 43:4915

    Article  CAS  Google Scholar 

  4. Desborough IJ, Hall IH, Neisser JZ (1979) Polymer 20:545

    Article  CAS  Google Scholar 

  5. Poulin-Dandurand S, Pérez S, Revol JF, Brisse F (1979) Polymer 20:419

    Article  CAS  Google Scholar 

  6. Ho RM, Ke KZ, Chen M (2000) Macromolecules 33:7529

    Article  CAS  Google Scholar 

  7. Ivanov DA, Bar G, Dosière M, Koch MHJ (2008) Macromolecules 41:9224

    Article  CAS  Google Scholar 

  8. Hong PD, Chung WT, Hsu CF (2002) Polymer 43:3335

    Article  CAS  Google Scholar 

  9. Wang BJ, Li CY, Hanzlicek J, Cheng SZD, Geil PH, Grebowicz J, Ho R-M (2001) Polymer 42:7171

    Article  CAS  Google Scholar 

  10. Chung WT, Yeh WJ, Hong PD (2002) J Appl Polym Sci 83:2426

    Article  CAS  Google Scholar 

  11. Wu PL, Woo EM (2003) J Polym Sci Part B: Polym Phys 41:80

    Article  CAS  Google Scholar 

  12. Pyda M, Wunderlich B (2000) J Polym Sci Part B: Polym Phys 38:622

    Article  CAS  Google Scholar 

  13. Sanz A, Nogales A, Ezquerra TA, Soccio M, Munari A, Lotti N (2009) Macromolecules 43:671

    Article  Google Scholar 

  14. Song M (2001) J Appl Polym Sci 81:2779

    Article  CAS  Google Scholar 

  15. Alvarez C, Šics I, Nogales A, Denchev Z, Funari SS, Ezquerra TA (2004) Polymer 45:3953

    Article  CAS  Google Scholar 

  16. Di Lorenzo ML, Righetti MC, Cocca M, Wunderlich B (2010) Macromolecules 43:7689

    Article  Google Scholar 

  17. Cheng SZD, Pan R, Wunderlich B (1988) Die Makromolekulare Chemie 189:2443

    Article  CAS  Google Scholar 

  18. Chuang WT, Hong PD, Shih KS (2004) Polymer 45:8583

    Article  CAS  Google Scholar 

  19. Chuang WT, Su WB, Jeng US, Hong PD, Su CJ, Su CH, Huang YC, Laio KF, Su AC (2011) Macromolecules 44:1140

    Article  CAS  Google Scholar 

  20. Luo WA, Chen YJ, Chen XD, Liao ZF, Mai KC, Zhang MQ (2008) Macromolecules 41:3912

    Article  CAS  Google Scholar 

  21. Luo WA, Liao ZF, Yan J, Li YB, Chen XD, Mai KC, Zhang MQ (2008) Macromolecules 41:7513

    Article  CAS  Google Scholar 

  22. Luo WA, Chen XD, Liao ZF, Yang J, Mai KC, Zhang MQ (2010) Phys Chem Chem Phys 12:4686

    Article  CAS  Google Scholar 

  23. Duan YX, Zhang JM, Shen DY, Yan SK (2003) Macromolecules 36:4874

    Article  CAS  Google Scholar 

  24. Zhang JM, Duan YX, Sato H, Tsuji H, Noda I, Yan SK, Ozaki Y (2005) Macromolecules 38:8012

    Article  CAS  Google Scholar 

  25. Hu Y, Zhang JM, Sato H, Noda I, Ozaki Y (2007) Polymer 48:4777

    Article  CAS  Google Scholar 

  26. Ward IM, Wilding MA (1977) Polymer 18:327

    Article  CAS  Google Scholar 

  27. Bulkin BJ, Lewin M, Kim J (1987) Macromolecules 20:830

    Article  CAS  Google Scholar 

  28. Kim KJ, Bae JH, Kim YH (2001) Polymer 42:1023

    Article  CAS  Google Scholar 

  29. Chuah HH (2001) Macromolecules 34:6985

    Article  CAS  Google Scholar 

  30. Roe RJ (2000) Methods of X-ray and neutron scattering in polymer science 5.1. Oxford University Press, New York

    Google Scholar 

  31. Crist B (2003) Macromolecules 36:4880

    Article  CAS  Google Scholar 

  32. Auriemma F, Ruiz de Ballesteros O, De Rosa C (2010) Macromolecules 43:9787

    Article  CAS  Google Scholar 

  33. Krueger KN, Zachmann HG (1993) Macromolecules 26:5202

    Article  CAS  Google Scholar 

  34. Roe RJ (2000) Methods of X-ray and Neutron Scattering in Polymer Science 5.3.3.2. Oxford University Press, New York

    Google Scholar 

  35. Goderis B, Reynaers H, Koch MHJ, Mathot VBF (1999) J Polym Sci, Part B: Polym Phys 37:1715

    Article  CAS  Google Scholar 

  36. Lee B, Shin TJ, Lee SW, Yoon J, Kim J, Ree M (2004) Macromolecules 37:4174

    Article  CAS  Google Scholar 

  37. Xu H, Ince BS, Cebe P (2003) J Polym Sci, Part B: Polym Phys 41:3026

    Article  CAS  Google Scholar 

  38. Xu H, Cebe P (2004) Macromolecules 37:2797

    Article  CAS  Google Scholar 

  39. Wunderlich B (1980) Macromolecular physics volume 3: Crystal melting

  40. Cheng SZD, Wu ZQ, Wunderlich B (1987) Macromolecules 20:2802

    Article  CAS  Google Scholar 

  41. Huo P, Cebe P (1992) J Polym Sci, Part B: Polym Phys 30:239

    Article  CAS  Google Scholar 

  42. Huo P, Cebe P (1992) Colloid & Polymer Science 270:840

    Article  CAS  Google Scholar 

  43. Cheng SZD, Cao MY, Wunderlich B (1986) Macromolecules 19:1868

    Article  CAS  Google Scholar 

  44. Huo P, Cebe P (1992) Macromolecules 25:902

    Article  CAS  Google Scholar 

  45. Hong PD, Chuang WT, Yeh WJ, Lin TL (2002) Polymer 43:6879

    Article  CAS  Google Scholar 

  46. Sanz A, Nogales A, Ezquerra TA, Lotti N, Munari A, Funari SS (2006) Polymer 47:1281

    Article  CAS  Google Scholar 

  47. Ivanov DA, Legras R, Jonas AM (1999) Macromolecules 32:1582

    Article  CAS  Google Scholar 

  48. Xu H, Cebe P (2005) Polymer 46:8734

    Article  CAS  Google Scholar 

  49. Fai Lau S, Suzuki H, Wunderlich B (1984) J Polym Sci Polymer Phys Ed 22:379

    Article  Google Scholar 

  50. El Shafee E (2003) Polymer 44:3727

    Article  Google Scholar 

  51. Chen HP, Cebe P (2008) Macromolecules 42:288

    Article  Google Scholar 

  52. Schick C, Dobbertin J, Pötter M, Dehne H, Hensel A, Wurm A, Ghoneim A, Weyer S (1997) J Therm Anal Calorim 49:499

    Article  CAS  Google Scholar 

  53. Di Lorenzo ML (2009) Polymer 50:578

    Article  Google Scholar 

  54. Nogales A, Ezquerra TA, Denchev Z, Sics I, Calleja FJB, Hsiao BS (2001) J Chem Phys 115:3804

    Article  CAS  Google Scholar 

  55. Šics I, Ezquerra TA, Nogales A, Denchev Z, Alvarez C, Funari SS (2003) Polymer 44:1045

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of National Natural Science Foundation of China (Grant No. 50773088) is gratefully acknowledged. The synchrotron SAXS experiments were supported by Shanghai Synchrotron Radiation Facility in China (j10sr0008 and 08sr0188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouke Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Luo, J. & Yan, S. Crystal structure and thermal behavior of cold-crystallized poly(trimethylene terephthalate). Colloid Polym Sci 291, 757–766 (2013). https://doi.org/10.1007/s00396-012-2786-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2786-8

Keywords

Navigation