Skip to main content
Log in

Control of the water adhesion on hydrophobic micropillars by spray coating technique

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We present an alternative approach for controlling the water adhesion on solid superhydrophobic surfaces by varying their coverage with a spray coating technique. In particular, micro-, submicro-, and nanorough surfaces were developed starting from photolithographically tailored SU-8 micropillars that were used as substrates for spraying first poly(tetrafluoroethylene) submicrometer particles and subsequently iron oxide nanoparticles. The sprayed particles serve to induce surface submicrometer and nanoscale roughness, rendering the SU-8 patterns superhydrophobic (apparent contact angle values of more than 150°), and also to tune the water adhesion between extreme states, turning the surfaces from “non-sticky” to “sticky” while preserving their superhydrophobicity. The influence of the chemical properties and of the geometrical characteristics of the functionalized surfaces on the wetting properties is discussed within the frame of the theory. This simple method can find various applications in the fabrication of microfluidic devices, smart surfaces, and biotechnological and antifouling materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jiang L, Wang R, Yang B, Li TJ, Tryk DA, Fujishima A, Hashimoto K, Zhu DB (2000) Binary cooperative complementary nanoscale interfacial materials. Pure Appl Chem 72:73–81

    Article  CAS  Google Scholar 

  2. Liu M, Jiang L (2010) Switchable adhesion on liquid/solid interfaces. Adv Funct Mater 20:3752–3764

    Google Scholar 

  3. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  4. Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090

    Article  Google Scholar 

  5. Jon P, Barnes P (2007) Biomimetic solutions to sticky problems. Science 318:203–204

    Article  Google Scholar 

  6. Carre A, Mittal KL (2009) Superhydrophobic Surfaces. VSP/Brill, Leiden

    Google Scholar 

  7. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Article  CAS  Google Scholar 

  8. Roach P, Shirtcliffe NJ, Newton MI (2007) Progress in superhydrophobic surface development. Soft Matter 4:224–240

    Article  Google Scholar 

  9. Blossey R (2003) Self-cleaning surfaces—virtual realities. Nat Mater 2:301–306

    Article  CAS  Google Scholar 

  10. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790

    Article  CAS  Google Scholar 

  11. Zhu S, Li Y, Zhang J, Lu C, Dai X, Jia F, Gao H, Yang B (2010) Biomimetic polyimide nanotube arrays with slippery or sticky superhydrophobicity. J Colloid Interface Sci 344:541–546

    Article  CAS  Google Scholar 

  12. Yao Y, Dong X, Hong S, Ge H, Han CC (2006) Shear-controlled micro/nanometer-scaled super-hydrophobic surfaces with tunable sliding angles from single component isostatic poly(propylene). Macromol Rapid Comm 27:1627–1631

    Article  CAS  Google Scholar 

  13. Quere D, Lafuma A, Bico J (2003) Slippy and sticky microtextured solids. Nanotechnology 14:1109–1112

    Article  CAS  Google Scholar 

  14. Winkleman A, Gotesman G, Yoffe A, Naaman R (2008) Immobilizing a drop of water: fabricating highly hydrophobic surfaces that pin water droplets. Nano Lett 8:1241–1245

    Article  CAS  Google Scholar 

  15. McHale G, Shirtcliffe NJ, Newton MI (2004) Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20:10146–10149

    Article  CAS  Google Scholar 

  16. Liu M, Zheng Y, Zhai J, Jiang L (2010) Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Acc Chem Res 43:368–377

    Article  CAS  Google Scholar 

  17. Liu K, Yao X, Jiang L (2010) Recent developments in bio-inspired special wettability. Chem Soc Rev 39:3240–3255

    Article  CAS  Google Scholar 

  18. Zhang Y, Chen Y, Shi L, Li J, Guo Z (2012) Recent progress of double-structural and functional materials with special wettability. J Mater Chem 22:799–815

    Article  CAS  Google Scholar 

  19. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Article  CAS  Google Scholar 

  20. Bormashenko E, Stein T, Pogreb R, Aurbach D (2009) “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J Phys Chem C 113:5568–5572

    Article  CAS  Google Scholar 

  21. Lai Y, Lin C, Huang J, Zhuang H, Sun L, Nguyen T (2008) Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir 24:3867–3873

    Article  CAS  Google Scholar 

  22. Lai Y, Gao X, Zhuang H, Huang J, Lin C, Jiang L (2009) Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv Mater 21:3799–3803

    Article  CAS  Google Scholar 

  23. Huang XJ, Kim DK, Im M, Lee JH, Yoon JB, Choi YK (2009) “Lock-and-key” geometry effect of patterned surfaces: wettability and switching of adhesive force. Small 5:90–94

    Article  CAS  Google Scholar 

  24. Furstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21:956–961

    Article  Google Scholar 

  25. Feng J, Tuominen MT, Rothstein JP (2011) Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures. Adv Funct Matter 21:3715–3722

    Article  CAS  Google Scholar 

  26. Shirtcliffe NJ, Aqil S, Evans C, McHale G, Newton MI, Perry CC, Roach P (2004) The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping. J Micromech Microeng 14:1384–1389

    Article  Google Scholar 

  27. Marquez-Velasco J, Vlachopoulou ME, Tserepi AD, Gogolides E (2010) Stable superhydrophobic surfaces induced by dual-scale topography on SU-8. Microelectron Eng 87:782–785

    Article  CAS  Google Scholar 

  28. Wagterveld RM, Berendsen CWJ, Bouaidat S, Jonsmann J (2006) Ultralow hysteresis superhydrophobic surfaces by excimer laser modification of SU-8. Langmuir 22:10904–10908

    Article  CAS  Google Scholar 

  29. He Y, Jiang C, Yin H, Chen J, Yuan W (2011) Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J Colloid Interface Sci 364:219–229

    Article  CAS  Google Scholar 

  30. Debuisson D, Senez V, Arscott S (2011) SU-8 micropatterning for microfluidic droplet and microparticle focusing. J Micromech Microeng 21:065011

    Article  Google Scholar 

  31. Zhu L, Feng Y, Ye X, Zhou Z (2006) Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures. Sens Actuator A 130–131:595–600

    Article  Google Scholar 

  32. Narhe RD, Beysens DA (2006) Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23:6486–6489

    Article  Google Scholar 

  33. Caputo G, Cortese B, Nobile C, Salerno M, Cingolani R, Gigli G, Cozzoli PD, Athanassiou A (2009) Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness. Adv Funct Mater 19:1149–1157

    Article  CAS  Google Scholar 

  34. Hong L, Pan T (2010) Photopatternable superhydrophobic nanocomposites for microfabrication. J Microelectromech Syst 19:246–253

    Article  CAS  Google Scholar 

  35. Debuisson D, Senez V, Arscott S (2011) Tunable contact angle hysteresis on micropatterned surfaces. Appl Phys Lett 98:184101

    Article  Google Scholar 

  36. Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078

    Article  CAS  Google Scholar 

  37. Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652

    Article  CAS  Google Scholar 

  38. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  CAS  Google Scholar 

  39. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to kindly acknowledge the useful advices of Dr. Federico Grisotto, Dr, Ioannis Liakos, Dr. Fabrizio Spano, Dr. Francesca Villafiorita-Monteleone, and Mr. Gabriele Nanni, all of them working on the Smart Materials platform of the Italian Institute of Technology, in the Center for Biomolecular Nanotechnologies in Arnesano, Lecce, Italy. A. Athanassiou and P. D. Cozzoli acknowledge financial support from the Italian Ministry of Education, University and Research through the project AEROCOMP (contract MIUR no. DM48391).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Athanasios Milionis or Athanassia Athanassiou.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milionis, A., Martiradonna, L., Anyfantis, G.C. et al. Control of the water adhesion on hydrophobic micropillars by spray coating technique. Colloid Polym Sci 291, 401–407 (2013). https://doi.org/10.1007/s00396-012-2752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2752-5

Keywords

Navigation