Skip to main content
Log in

Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, the contact angle hysteresis (CAH) of nanodroplets on both rigid and flexible substrates with different wettabilities was studied using molecular dynamics (MD) simulations. The critical shear stress (CSS) that determines the motion of the contact line (CL) was investigated. A theoretical correlation between CAH and CSS was proposed. Both CAH and CSS reflect the energy dissipation at the CL of the droplet in response to the exerted force. MD results of CAH are qualitatively consistent with the theoretical model. Simulation results also show that, for the same liquid–solid interactions, CAH on the flexible substrate is larger than that on the rigid substrate. These findings aim to enhance our understanding of the mechanism of the CAH at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

θ :

Contact angle

γ :

Surface tension

ε :

Depth of the potential well

σ :

Effective molecular diameter

τ c :

Critical shear stress

h * :

Height of the ridge

G :

Shear modulus of the substrate

E 0 :

Height of the energy barrier

k B :

The Boltzmann constant

T :

The absolute temperature

R :

Droplet base radius

l:

Liquid

s:

Solid

v:

Vapor

r:

Receding angle

a:

Advancing angle

CA:

Contact angle

CAH:

Contact angle hysteresis

CSS:

Critical shear stress

CL:

Contact line

MD:

Molecular dynamics

LJ:

Lennard–Jones

References

  1. Young T (1805) Philos Trans R Soc London 95:65

    Article  Google Scholar 

  2. de Gennes PG (1985) Rev Mod Phys 57:828

    Google Scholar 

  3. Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Musina A, Jager R, Barkay Z (2008) Langmuir 24:4020

    Article  CAS  Google Scholar 

  4. Extrand CW, Kumagai Y (1997) J Colloid Interface Sci 191:378

    Article  CAS  Google Scholar 

  5. Lam CNC, Kim N, Hui D, Kwok DY, Hair ML, Neumann AW (2001) Colloids Surf A 189:265

    Article  CAS  Google Scholar 

  6. Delmas M, Monthioux M, Ondarcuhu T (2011) Phys Rev Lett 106:136102

    Article  Google Scholar 

  7. Wang BB, Zhao YP, Yu TX (2011) J Adhes Sci Technol 25:93

    Article  Google Scholar 

  8. Joanny JF, de Gennes PG (1984) J Chem Phys 81:552

    Article  CAS  Google Scholar 

  9. Schwartz AM (1980) J Colloid Interface Sci 75:404

    Article  CAS  Google Scholar 

  10. Extrand CW (1998) J Colloid Interface Sci 207:11

    Article  CAS  Google Scholar 

  11. Sedev RV, Petrov JG, Neumann AW (1996) J Colloid Interface Sci 180:36

    Article  CAS  Google Scholar 

  12. Extrand CW, Kumagai Y (1996) J Colloid Interface Sci 184:191

    Article  CAS  Google Scholar 

  13. Herring C (1951) In: Kingston WE (ed) Physics of powder metallurgy. McGraw-Hill, New York, pp 143–179

    Google Scholar 

  14. Waghmare PR, Mitra SK (2010) Langmuir 26:17082

    Article  CAS  Google Scholar 

  15. Nelson WC, Sen P, Kim CJ (2011) Langmuir 27:10319

    Article  CAS  Google Scholar 

  16. Mettu S, Chaudhury MK (2011) Langmuir 27:10327

    Article  CAS  Google Scholar 

  17. Bormashenko E, Musina A, Zinigrad M (2011) Colloids Surf A 385:235

    Article  CAS  Google Scholar 

  18. Yu YS, Wang ZQ, Zhao YP (2012) J Colloid Interface Sci 365:254

    Article  CAS  Google Scholar 

  19. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827

    Article  CAS  Google Scholar 

  20. Rao DN (2003) In: Mittal KL (ed) Contact angle, wettability and adhesion, 3rd edn. VSP, Utrecht, pp 191–210

    Google Scholar 

  21. Feng JT, Wang FC, Zhao YP (2009) Biomicrofluidics 3:022406

    Article  Google Scholar 

  22. Shanahan MER, de Gennes PG (1986) Comptes Rendus Acad Sci Serie II 302:517

    Google Scholar 

  23. Yu YS (2012) Appl Math Mech-Engl Ed 33:1095

    Article  Google Scholar 

  24. Yu YS, Zhao YP (2009) J Colloid Interface Sci 339:489

    Article  CAS  Google Scholar 

  25. Tadmor R (2011) Soft Matter 7:1577

    Article  CAS  Google Scholar 

  26. Hong SD, Ha MY, Balachandar S (2009) J Colloid Interface Sci 339:187

    Article  CAS  Google Scholar 

  27. Koishi T, Yasuoka K, Fujikawa S, Zeng XC (2011) ACS Nano 5:6834

    Article  CAS  Google Scholar 

  28. Wang FC, Zhao YP (2011) Soft Matter 7:8628

    Article  CAS  Google Scholar 

  29. De Coninck J, Blake TD (2008) Annu Rev Mater Res 38:1

    Article  Google Scholar 

  30. Plimpton S (1995) J Comput Phys 117:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 11072244, 60936001, and 11021262), the Key Research Program of the Chinese Academy of Sciences (grant no. KJZD-EW-M01) and the Instrument Developing Project of the Chinese Academy of Sciences (grant no. Y2010031), and the Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Pu Zhao.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FC., Zhao, YP. Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study. Colloid Polym Sci 291, 307–315 (2013). https://doi.org/10.1007/s00396-012-2747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2747-2

Keywords

Navigation