Skip to main content
Log in

Interpenetrating polymer networks templated on bicontinuous microemulsions containing silicone oil, methacrylic acid, and hydroxyethyl methacrylate

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane-poly(methacrylic acid—hydroxyethyl methacrylate) interpenetrating polymer networks (PDMS-P(MAA–HEMA) IPN) were formulated and polymerized simultaneously from bicontinuous microemulsion templates. Microemulsions containing reactive silicone oils and MAA/HEMA in aqueous solution were stabilized with silicone surfactants, and were then reacted at 50 °C for 3 h under an N2 atmosphere. The formation of bicontinuous morphology was confirmed by laser scanning confocal microscopy, reversible swelling behavior, differential scanning calorimetry, texture analysis, and permeability to vitamin B12 in aqueous solution. Incorporating polymerizable surfactants into the microemulsion aided in stabilizing the initial microemulsion structure during polymerization, yielding a more uniform IPN morphology with domain sizes of <200 nm at equilibrium swelling. The process developed here demonstrates a simple, single-step polymerization approach to forming IPNs from low viscosity microemulsion templates, and could potentially be extended to a variety of hydrophilic and hydrophobic monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sperling LH, Mishra V (1996) The current status of interpenetrating polymer networks. Polym Adv Technol 7:197–208

    Article  CAS  Google Scholar 

  2. Lucas P, Robin J (2007) Silicone-based polymer blends: an overview of the materials and processes. Adv Polym Sci 209:111–147

    CAS  Google Scholar 

  3. Kim SC, Klempner D, Frisch KS, Radigan W, Frisch HL (1976) Polyurethane interpenetrating polymer networks. I. synthesis and morphology of polyurethane-poly(methyl methacrylate) interpenetrating polymer networks. Macromolecules 9:258–263

    Article  CAS  Google Scholar 

  4. Klempner D, Frisch KC (1990) Advances in interpenetrating polymer networks. Technomic Publishing, Lancaster

    Google Scholar 

  5. Lee JH, Kim SC (1986) Hydrophilic-hydrophobic interpenetrating polymer networks (IPN's) synthesized under high pressure. 1. morphology, dynamic mechanical properties, and swelling behavior of polyurethane-polystyrene IPN's. Macromolecules 19:644–648

    Article  CAS  Google Scholar 

  6. Sperling LH (1981) Interpenetrating polymer networks and related materials. Plenum, New York

    Book  Google Scholar 

  7. Zhang X, Wu D, Chu C (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25:3793–3805

    Article  CAS  Google Scholar 

  8. Abbasi F, Mirzadeh H, Katbab AA (2002) Sequential interpenetrating polymer networks of poly(2-hydroxyethyl methacrylate) and polydimethylsiloxane. J Appl Polym Sci 85:1825–1831

    Article  CAS  Google Scholar 

  9. Pavlyuchenko VN, Sorochinskaya OV, Ivanchev SS, Khaikin SY, Trounov VA, Lebedev VT, Sosnov EA, Gofman IV (2009) New silicone hydrogels based on interpenetrating polymer networks comprising polysiloxane and poly(vinyl alcohol) networks. Polym Adv Technol 20:367–377

    Article  CAS  Google Scholar 

  10. Liu L, Sheardown H (2005) Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Biomaterials 26:233–244

    Article  CAS  Google Scholar 

  11. Turner JS, Cheng Y (2000) Preparation of PDMS-PMAA interpenetrating polymer network membranes using the monomer immersion method. Macromolecules 33:3714–3718

    Article  CAS  Google Scholar 

  12. Turner JS, Cheng Y (2003) Morphology of PDMS-PMAA IPN membranes. Macromolecules 36:1962–1966

    Article  CAS  Google Scholar 

  13. Hoar TP, Schulman JH (1943) Transparent water-in-oil dispersions: the oleopathic hydro-micelle [1]. Nature 152:102–103

    Article  CAS  Google Scholar 

  14. Danielsson I, Lindman B (1981) The definition of microemulsion. Colloids Surf 3:391–392

    Article  CAS  Google Scholar 

  15. Winsor PA (1954) Solvent properties of amphiphilic compounds. Butterworths, London

    Google Scholar 

  16. Winsor PA (1948) Hydrotropy, solubilisation and related emulsification processes. Trans Faraday Soc 44:376–398

    Article  CAS  Google Scholar 

  17. Salager J-L, Antón RE, Sabatini DA, Harwell JH, Acosta EJ, Tolosa LI (2005) Enhancing solubilization in microemulsions—state of the art and current trends. J Surfact Deterg 8:3–21

    Article  CAS  Google Scholar 

  18. Holmberg K (1997) Microemulsions in biotechnology. In: Solans C, Kunieda H (eds) Industrial application of microemulsions. Marcel Dekker, New York, p 69

    Google Scholar 

  19. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Delivery Rev 45:89–121

    Article  CAS  Google Scholar 

  20. Chow PY, Gan LM (2005) Microemulsion polymerization and reaction. In: Okubo M (ed) Polymer particles. Springer, Berlin, p 257

    Google Scholar 

  21. Chew CH, Li TD, Gan LH, Quek CH, Gan LM (1998) Bicontinuous-nanostructured polymeric materials from microemulsion polymerization. Langmuir 14:6068–6076

    Article  CAS  Google Scholar 

  22. Guerrero-Ramírez LG, Nuño-Donlucas SM, Cesteros LC, Katime I (2008) Smart copolymeric nanohydrogels: synthesis, characterization and properties. Mater Chem Phys 112:1088–1092

    Article  Google Scholar 

  23. O'Donnell J, Kaler EW (2008) Microstructure evolution and monomer partitioning in reversible addition–fragmentation chain transfer microemulsion polymerization. Macromolecules 41:6094–6099

    Article  Google Scholar 

  24. Jones BH, Lodge TP (2010) Nanoporous materials derived from polymeric bicontinuous microemulsions. Chem Mater 22:1279–1281

    Article  CAS  Google Scholar 

  25. Yang J, Shu W-B, Qin W (2010) Research on porous materials from bicontinuous microemulsion polymerization. J Funct Mat 41:148–152

    CAS  Google Scholar 

  26. Peinado C, Bosch P, Martin V, Corrales T (2006) Photoinitiated polymerization in bicontinuous microemulsions: fluorescence monitoring. J Polym Sci Part A 44:5291–5303

    Article  CAS  Google Scholar 

  27. Wang H-J, Li D-S, Peng M (2008) Preparation of bicontinuous porous polymeric materials via microemulsion polymerization. Polym Mat Sci Eng 24:70–73

    Google Scholar 

  28. Summers M, Eastoe J, Davis S, Du Z, Richardson RM, Heenan RK, Steytler D, Grillo I (2001) Polymerization of cationic surfactant phases. Langmuir 17:5388–5397

    Article  CAS  Google Scholar 

  29. Gao F, Ho C, Co CC (2006) Polymerization in bicontinuous microemulsion glasses. Macromolecules 39:9467–9472

    Article  CAS  Google Scholar 

  30. Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson KA (2007) Gelled polymerizable microemulsions. 1. Phase behavior. Langmuir 23:7730–7737

    Article  CAS  Google Scholar 

  31. Stubenrauch C, Tessendorf R, Salvati A, Topgaard D, Sottmann T, Strey R, Lynch I (2008) Gelled polymerizable microemulsions. 2. Microstructure. Langmuir 24:8473–8482

    Article  CAS  Google Scholar 

  32. Magno M, Tessendorf R, Medronho B, Miguel MG, Stubenrauch C (2009) Gelled polymerizable microemulsions. 3. Rheology. Soft Matter 5:4763–4772

    Article  CAS  Google Scholar 

  33. Acosta E, Brooks M, Castellino V, Chen Y, Cheng Y-L, Li N, Whinton M. (2011) Interpenetrating network silicone hydrogels. Canadian Provisional Patent Applicaton.

  34. Brook MA, Whinton M, Gonzaga F, Li N (2011) Elastomeric hydrogels by polymerizing silicone microemulsions. Chem Commun 47:8874–8876

    Article  CAS  Google Scholar 

  35. Castellino V, Cheng Y-L, Acosta E (2010) The hydrophobicity of silicone-based oils and surfactants and their use in reactive microemulsions. J Colloid Interface Sci 353:196–205

    Article  Google Scholar 

  36. Siltech LLC, Emulsifiers. http://www.siltechmfg.net/emulsifiers_page.html. Accessed 21 May 2012.

  37. Siltech LLC, Formulator friendly reactive intermediates. Available online at http://www.siltechpersonalcare.com/pdfs/products/Reactive_Silicones.pdf. Accessed 21 May 2012.

  38. Acosta E, Uchiyama H, Sabatini DA, Harwell JH (2002) The role of hydrophilic linkers. J Surfactants Deterg 5:151–157

    Article  CAS  Google Scholar 

  39. Acosta EJ, Harwell JH, Sabatini DA (2004) Self-assembly in linker-modified microemulsions. J Colloid Interface Sci 274:652–664

    Article  CAS  Google Scholar 

  40. Acosta EJ, Nguyen T, Witthayapanyanon A, Harwell JH, Sabatini DA (2005) Linker-based bio-compatible microemulsions. Environ Sci Technol 39:1275–1282

    Article  CAS  Google Scholar 

  41. Lim WH (2006) Phase diagram, viscosity and conductivity of α-sulfonate methyl esters derived from palm stearin/1-butanol/alkane/water systems. J Surfactants Deterg 9:349–355

    Article  CAS  Google Scholar 

  42. Meier W (1997) Structure of w/o-microemulsion templated polymer networks. Colloid Polym Sci 275:530–536

    Article  CAS  Google Scholar 

  43. Laguës M, Sauterey C (1980) Percolation transition in water in oil microemulsions. Electrical conductivity measurements. J Phys Chem 84:3503–3508

    Article  Google Scholar 

  44. Clausse M, Peyrelasse J, Heil J, Boned C, Lagourette B (1981) Bicontinuous structure zones in microemulsions. Nature 293:636–638

    Article  CAS  Google Scholar 

  45. Deutch-Kolevzon R, Aserin A, Garti N (2011) Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions. Chem Phys Lipids 164:654–663

    Article  CAS  Google Scholar 

  46. Gasperlin M, Bester-Rogac M (2009) Physicochemical characterization of pharmaceutically acceptable microemulsions: tween 40/Imwitor308/Isopropyl myristate/water. In: Fanum M (ed) Microemulsions properties and applications. CRC Press, Boca Raton, p 293

    Google Scholar 

  47. Teubner M, Strey R (1987) Origin of the scattering peak in microemulsions. J Chem Phys 87:3195–3199

    Article  CAS  Google Scholar 

  48. DeGennes PG, Taupin C (1982) Micro-emulsions and the flexibility of oil–water interfaces. J Phys Chem 86:2294–2304

    Article  CAS  Google Scholar 

  49. Sottmann T, Strey R, Chen S (1996) A small-angle neutron scattering study of nonionic surfactant molecules at the water-oil interface: area per molecule, microemulsion domain size, and rigidity. J Chem Phys 106:6483–6491

    Article  Google Scholar 

  50. Zemb T (2009) Flexibility, persistence length and bicontinuous microstructures in microemulsions. C R Chim 12:218–224

    Article  CAS  Google Scholar 

  51. Guest D, Auvray L, Langevin D (1985) Persistence length measurements in middle phase microemulsions. J Phys Lett 46:1055–1063

    Article  CAS  Google Scholar 

  52. Gentle TE, Snow SA (1995) Adsorption of small silicone polyether surfactants at the air/water interface. Langmuir 11:2905–2910

    Article  CAS  Google Scholar 

  53. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York

    Book  Google Scholar 

  54. Li B, Jiang Y, Liu Y, Wu Y, Yu H, Zhu M (2009) Novel poly(N-isopropylacrylamide)/clay/poly(acrylamide) IPN hydrogels with the response rate and drug release controlled by clay content. J Polym Sci B 47:96–106

    Article  CAS  Google Scholar 

  55. Haraguchi K, Li H, Song L, Murata K (2007) Tunable optical and swelling/deswelling properties associated with control of the coil-to-globule transition of poly(N-isopropylacrylamide) in polymer—clay nanocomposite gels. Macromolecules 40:6973–6980

    Article  CAS  Google Scholar 

  56. Gehrke SH, Cussler EL (1989) Mass transfer in pH-sensitive hydrogels. Chem Eng Sci 44:559–566

    Article  CAS  Google Scholar 

  57. Dembczynski R, Jankowski T (2000) Characterisation of small molecules diffusion in hydrogel-membrane liquid-core capsules. Biochem Eng J 6:41–44

    Article  CAS  Google Scholar 

  58. Colton CK, Smith KA, Merrill EW, Farrell PC (1971) Permeability studies with cellulosic membranes. J Biomed Mater Res 5:459–488

    Article  CAS  Google Scholar 

  59. Turner JS, Cheng Y-L (2004) pH dependence of PDMS-PMAA IPN morphology and transport properties. J Membr Sci 240:19–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Siltech Corp. and Rick Vrckovnik for providing the silicone alkyl polyether and silicone acrylate surfactants and supporting technical literature used in this work. The authors thank Silvia Zarate and Oliver Chung for their technical assistance with the FTIR and SAXS characterization. This work was supported by the National Science and Engineering Research Council of Canada (NSERC) and the 20/20 NSERC Ophthalmic Materials Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Acosta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellino, V., Acosta, E. & Cheng, YL. Interpenetrating polymer networks templated on bicontinuous microemulsions containing silicone oil, methacrylic acid, and hydroxyethyl methacrylate. Colloid Polym Sci 291, 527–539 (2013). https://doi.org/10.1007/s00396-012-2741-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2741-8

Keywords

Navigation