, Volume 291, Issue 1, pp 143-156
Date: 12 Jun 2012

Design and analysis of the homogeneous and heterogeneous distribution of water confined within colloidal polymer particles

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Water is known to distribute within polymeric films in multiple states differentiable by the energy of association. Potentiometric swelling of carboxylated latex samples and subsequent differential scanning calorimetry (DSC) and thermogravimetric analysis verified this distribution of water, specifically confined within colloidal nanoparticle dimensions. DSC cooling curves can delineate between the freezable bound and freezable unbound water at low total water content but become difficult to distinguish the freezable bound contribution at high total water content. Of note is that the ratio of weakly bound water in the secondary layer to the water strongly hydrogen-bound to the polymer is approximately constant regardless of carboxylic acid type and, in fact, is greater for the case of the hydrophobic base polymer. Aside from its distribution within the particles, the total water content also appeared to be more related to the hydroplasticized glass point of the polymer colloid as opposed to the polarity of the polymer.