Skip to main content
Log in

Controllable fabrication of nanocrystal-polymer hybrids via the catalytic chain transfer polymerization process

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A facile catalytic chain transfer polymerization (CCTP) technique has been developed to synthesize covalently linked CdS nanocrystal-polymer hybrids with good optical properties. The in situ polymerization of methyl methacrylate (MMA) on the surface of modified CdS nanocrystals (NCs) with diameter of 5 nm via CCTP process yielded CdS-polymethylmethacrylate (PMMA) hybrid nanocomposites; while the incorporation of hydroxyl-coated CdS NCs into poly(methacryloxypropyltrimethoxysilane) (PMPS)-co-PMMA matrices prepared by CCTP afforded CdS-PMPS-co-PMMA hybrid nanocomposites, which were further cross-linked by free radical polymerization to form CdS NC-polymer network. The spectroscopic studies indicate that as-prepared CdS NC-polymer hybrids show good photoluminescence (PL) and the NC-polymer network exhibits highly enhanced PL property with respect to that before cross-linking. Also described are the probable mechanism for the catalytic chain transfer polymerization on the surface of modified nanocrystal and the measurement of chain transfer constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brus LE (1984) J Chem Phys 80:4403

    Article  CAS  Google Scholar 

  2. Alivisatos AP (1996) Science 271:933

    Article  CAS  Google Scholar 

  3. Tang ZY, Kotov NA, Giersig M (2002) Science 297:237

    Article  CAS  Google Scholar 

  4. Peng XG, Thessing J (2005) Struc Bond 118:79

    Article  CAS  Google Scholar 

  5. Coe S, Woo WK, Bawendi M, Bulovic V (2002) Nature 420:800

    Article  CAS  Google Scholar 

  6. Tesster N, Medvedev V, Kazes M, Kan S, Banin U (2002) Science 295:1506

    Article  CAS  Google Scholar 

  7. Mamedov AA, Belov A, Giersig M, Mamedova NN, Kotov NA (2001) J Am Chem Soc 123:7738

    Article  CAS  Google Scholar 

  8. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425

    Article  CAS  Google Scholar 

  9. Wang L, Liu YS, Jiang X, Qin DH, Cao Y (2007) J Phys Chem C 111:9538

    Article  CAS  Google Scholar 

  10. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897

    Article  CAS  Google Scholar 

  11. Bruchez MJ, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013

    Article  CAS  Google Scholar 

  12. Fernandez-Arguelles MT, Yakovlev A, Sperling RA, Luccardini C, Gaillard S, Sanz Medel A, Mallet JM, Brochon JC, Feltz A, Oheim M, Parak WJ (2007) Nano Lett 7:2613

    Article  Google Scholar 

  13. Wang LY, Li P, Zhuang J, Bai F, Feng J, Yan XY, Li YD (2008) Angew Chem Int Ed 47:1054

    Article  CAS  Google Scholar 

  14. Wang CW, Moffitt MG (2004) Langmuir 20:11784

    Article  CAS  Google Scholar 

  15. Zhang H, Wang CL, Li MJ, Zhang JH, Lu G, Yang B (2005) Adv Mater 17:853

    Article  Google Scholar 

  16. Sanchez-Gaytan BL, Cui W, Kim Y, Mendez-Polanco MA, Duncan TV, Fryd M, Wayland BB, Park SJ (2007) Angew Chem Int Ed 46:9235

    Article  CAS  Google Scholar 

  17. Stavrinadis A, Beal R, Smith JM, Assender HE, Watt AAR (2008) Adv Mater 20:3105

    Article  CAS  Google Scholar 

  18. Smith AM, Nie S (2008) J Am Chem Soc 130:11278

    Article  CAS  Google Scholar 

  19. Chen Y, Thakar R, Snee PT (2008) J Am Chem Soc 130:3744

    Article  CAS  Google Scholar 

  20. Bhaviripudi S, Qi J, Hu EL, Belcher AM (2007) Nano Lett 7:3512

    Article  CAS  Google Scholar 

  21. Chen S, Zhu J, Shen YF, Hu CH, Chen L (2007) Langmuir 23:850

    Article  CAS  Google Scholar 

  22. Chen L, Zhu J, Li Q, Chen S, Wang YR (2007) Eur Polym J 43:4593

    Article  CAS  Google Scholar 

  23. Hwang SH, Moorefield CN, Wang P, Jeong KU, Cheng SZD, Kotta KK, Newkome GR (2006) J Am Chem Soc 128:7505

    Article  CAS  Google Scholar 

  24. Cao XD, Li CM, Bao HF, Bao QL, Dong H (2007) Chem Mater 19:3773

    Article  CAS  Google Scholar 

  25. von Werne T, Patten TE (2001) J Am Chem Soc 123:7497

    Article  Google Scholar 

  26. Spange S (2000) Prog Polym Sci 25:781

    Article  CAS  Google Scholar 

  27. Heuts JPA, Kukulj D, Forster DJ, Davis TP (1998) Macromolecules 31:2894

    Article  CAS  Google Scholar 

  28. Heuts JPA, Forster DJ, Davis TP (1999) Macromol Rapid Commun 20:299

    Article  CAS  Google Scholar 

  29. Heuts JPA, Forster DJ, Davis TP (1999) Macromolecules 32:3907

    Article  CAS  Google Scholar 

  30. Gridnev AA, Ittel SD (2001) Chem Rev 101:3611

    Article  CAS  Google Scholar 

  31. Yang SY, Li Q, Chen L, Chen S (2008) J Mater Chem 18:5599

    Article  CAS  Google Scholar 

  32. Bakac A, Espenson JH (1984) J Am Chem Soc 106:5197

    Article  CAS  Google Scholar 

  33. Nosaka Y, Yamaguchi K, Miyama H, Hayashi H (1988) Chem Lett 17:605

    Article  Google Scholar 

  34. Zhang H, Zhou Z, Yang B, Gao MY (2003) J Phys Chem B 107:8

    Article  CAS  Google Scholar 

  35. Ghosh S, Mukherjee A, Kim H, Lee C (2003) Mater Chem Phys 78:726

    Article  CAS  Google Scholar 

  36. Chen M, Pan LJ, Huang ZQ, Cao JM, Zheng YD, Zhang HQ (2007) Mater Chem Phys 101:317

    Article  CAS  Google Scholar 

  37. Wang SH, Yang SH, Yang CL, Li ZQ, Wang JN, Ge WK (2000) J Phys Chem B 104:11853

    Article  CAS  Google Scholar 

  38. Brus L (1986) J Phys Chem 90:2555

    Article  CAS  Google Scholar 

  39. Lue CL, Cui ZC, Li Z, Yang B, Shen JC (2003) J Mater Chem 13:526

    Article  CAS  Google Scholar 

  40. Jing SY, Lee HJ, Choi CK (2002) J Korean Phys Soc 41:769

    CAS  Google Scholar 

  41. Haddleton DM, Depaquis E, Kelly EJ, Kukulj D, Morsley SR, Bon SAF, Eason MD, Steward AG (2001) Polym Chem 39:2378

    Article  CAS  Google Scholar 

  42. Mayo FR (1943) J Am Chem Soc 65:2324

    Article  CAS  Google Scholar 

  43. Roberts GE, Davis TP, Heuts JPA, Russell GT (2002) Polym Chem 40:782

    Article  CAS  Google Scholar 

  44. Suddaby KG, Maloney DR, Haddleton DM (1997) Macromolecules 30:702

    Article  CAS  Google Scholar 

  45. Chestnoy N, Harris TD, Hull R, Brus LE (1986) J Phys Chem 90:3393

    Article  CAS  Google Scholar 

  46. Noglik H, Pietro WJ (1994) Chem Mater 6:1593

    Article  CAS  Google Scholar 

  47. Wang Y, Herron N (1991) J Phys Chem 95:525

    Article  CAS  Google Scholar 

  48. Torimoto T, Tsumura N, Miyake M, Nishizawa M, Sakata T, Mori H, Yoneyama H (1999) Langmuir 15:1853

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundations (NSFs) of China (Grant No. 20576053, 20606016), NSF (NASA) of China (Grant No. 10676013), “863” Important National Science & Technology Specific Project (Grant No. 2007AA06A402), and the NSF of the Jiangsu Higher Education Institutions of China (Grant No. 07KJA53009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CF., Cheng, YP., Wang, JY. et al. Controllable fabrication of nanocrystal-polymer hybrids via the catalytic chain transfer polymerization process. Colloid Polym Sci 287, 829–837 (2009). https://doi.org/10.1007/s00396-009-2037-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2037-9

Keywords

Navigation