Skip to main content

Advertisement

Log in

Critical contribution of KV1 channels to the regulation of coronary blood flow

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Ion channels in smooth muscle control coronary vascular tone, but the identity of the potassium channels involved requires further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P < 0.001). Immunohistochemical staining demonstrated KV1.5 protein in the vascular smooth muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch-clamp experiments demonstrated significant correolide-sensitive (1–10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n = 5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3–3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P < 0.05). Dobutamine (0.3–10 µg/kg/min) elicited coronary metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P < 0.001). Coronary artery occlusions (15 s) elicited reactive hyperemia and correolide (3 µM) reduced the flow volume repayment by approximately 30 % (P < 0.05). Taken together, these data support a major role for KV1 channels in modulating baseline coronary vascular tone and, perhaps, vasodilation in response to increased metabolism and transient ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aiello EA, Malcolm AT, Walsh MP, Cole WC (1998) Beta-adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells. Am J Physiol 275:H448–H459

    CAS  PubMed  Google Scholar 

  2. Aiello EA, Walsh MP, Cole WC (1995) Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol 268:H926–H934

    CAS  PubMed  Google Scholar 

  3. Berwick ZC, Dick GM, Moberly SP, Kohr MC, Sturek M, Tune JD (2012) Contribution of voltage-dependent K channels to metabolic control of coronary blood flow. J Mol Cell Cardiol 52:912–919. doi:10.1016/j.yjmcc.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  4. Berwick ZC, Moberly SP, Kohr MC, Morrical EB, Kurian MM, Dick GM, Tune JD (2012) Contribution of voltage-dependent K+ and Ca2+ channels to coronary pressure-flow autoregulation. Basic Res Cardiol 107:264. doi:10.1007/s00395-012-0264-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD (2010) Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Microcirculation 17:600–607. doi:10.1111/j.1549-8719.2010.00054.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camici PG, d’Amati G, Rimoldi O (2015) Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol 12:48–62. doi:10.1038/nrcardio.2014.160

    Article  PubMed  Google Scholar 

  7. DeFily DV, Chilian WM (1995) Coronary microcirculation: autoregulation and metabolic control. Basic Res Cardiol 90:112–118

    Article  CAS  PubMed  Google Scholar 

  8. Deussen A, Brand M, Pexa A, Weichsel J (2006) Metabolic coronary flow regulation—current concepts. Basic Res Cardiol 101:453–464. doi:10.1007/s00395-006-0621-4

    Article  CAS  PubMed  Google Scholar 

  9. Dick GM, Bratz IN, Borbouse L, Payne GA, Dincer UD, Knudson JD, Rogers PA, Tune JD (2008) Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation. Am J Physiol Heart Circ Physiol 294:H2371–H2381. doi:10.1152/ajpheart.01279.2007

    Article  CAS  PubMed  Google Scholar 

  10. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086. doi:10.1152/physrev.00045.2006

    Article  CAS  PubMed  Google Scholar 

  11. Fedele F, Mancone M, Chilian WM, Severino P, Canali E, Logan S, De Marchis ML, Volterrani M, Palmirotta R, Guadagni F (2013) Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease. Basic Res Cardiol 108:387. doi:10.1007/s00395-013-0387-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Felix JP, Bugianesi RM, Schmalhofer WA, Borris R, Goetz MA, Hensens OD, Bao JM, Kayser F, Parsons WH, Rupprecht K, Garcia ML, Kaczorowski GJ, Slaughter RS (1999) Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage-gated potassium channel, KV1.3. Biochemistry 38:4922–4930. doi:10.1021/bi982954w

    Article  CAS  PubMed  Google Scholar 

  13. Gautier M, Hyvelin JM, de Crescenzo V, Eder V, Bonnet P (2007) Heterogeneous KV1 function and expression in coronary myocytes from right and left ventricles in rats. Am J Physiol Heart Circ Physiol 292:H475–H482. doi:10.1152/ajpheart.00774.2005

    Article  CAS  PubMed  Google Scholar 

  14. Gollasch M, Ried C, Bychkov R, Luft FC, Haller H (1996) K+ currents in human coronary artery vascular smooth muscle cells. Circ Res 78:676–688. doi:10.1161/01.RES.78.4.676

    Article  CAS  PubMed  Google Scholar 

  15. Goodwill AG, Fu L, Noblet JN, Casalini ED, Sassoon D, Berwick ZC, Kassab GS, Tune JD, Dick GM (2016) KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine. Am J Physiol Heart Circ Physiol 310:H693–H704. doi:10.1152/ajpheart.00688.2015

    Article  PubMed  Google Scholar 

  16. Gutterman DD, Miura H, Liu Y (2005) Redox modulation of vascular tone: focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol 25:671–678. doi:10.1161/01.ATV.0000158497.09626.3b

    Article  CAS  PubMed  Google Scholar 

  17. Hanner M, Green B, Gao YD, Schmalhofer WA, Matyskiela M, Durand DJ, Felix JP, Linde AR, Bordallo C, Kaczorowski GJ, Kohler M, Garcia ML (2001) Binding of correolide to the K(v)1.3 potassium channel: characterization of the binding domain by site-directed mutagenesis. Biochemistry 40:11687–11697

    Article  CAS  PubMed  Google Scholar 

  18. Hanner M, Schmalhofer WA, Green B, Bordallo C, Liu J, Slaughter RS, Kaczorowski GJ, Garcia ML (1999) Binding of correolide to K(v)1 family potassium channels. Mapping the domains of high affinity interaction. J Biol Chem 274:25237–25244

    Article  CAS  PubMed  Google Scholar 

  19. Heaps CL, Jeffery EC, Laine GA, Price EM, Bowles DK (2008) Effects of exercise training and hypercholesterolemia on adenosine-activation of voltage-dependent K+ channels in coronary arterioles. J Appl Physiol. doi:10.1152/japplphysiol.90958.2008

    PubMed  PubMed Central  Google Scholar 

  20. Hedegaard ER, Nielsen BD, Kun A, Hughes AD, Kroigaard C, Mogensen S, Matchkov VV, Frobert O, Simonsen U (2014) KV7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries. Br J Pharmacol 171:69–82. doi:10.1111/bph.12424

    Article  CAS  PubMed  Google Scholar 

  21. Kaczorowski GJ, Garcia ML (1999) Pharmacology of voltage-gated and calcium-activated potassium channels. Curr Opin Chem Biol 3:448–458. doi:10.1016/S1367-5931(99)80066-0

    Article  CAS  PubMed  Google Scholar 

  22. Kang PT, Chen CL, Ohanyan V, Luther DJ, Meszaros JG, Chilian WM, Chen YR (2015) Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation. J Mol Cell Cardiol 88:14–28. doi:10.1016/j.yjmcc.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  23. Khanamiri S, Soltysinska E, Jepps TA, Bentzen BH, Chadha PS, Schmitt N, Greenwood IA, Olesen SP (2013) Contribution of KV7 channels to basal coronary flow and active response to ischemia. Hypertension 62:1090–1097. doi:10.1161/HYPERTENSIONAHA.113.01244

    Article  CAS  PubMed  Google Scholar 

  24. Lee S, Yang Y, Tanner MA, Li M, Hill MA (2015) Heterogeneity in KV7 channel function in the cerebral and coronary circulation. Microcirculation 22:109–121. doi:10.1111/micc.12183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Chai Q, Gutterman DD, Liu Y (2003) Elevated glucose impairs cAMP-mediated dilation by reducing KV channel activity in rat small coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 285:H1213–H1219. doi:10.1152/ajpheart.00226.2003

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Gutterman DD, Rusch NJ, Bubolz A, Liu Y (2004) Nitration and functional loss of voltage-gated K+ channels in rat coronary microvessels exposed to high glucose. Diabetes 53:2436–2442

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Gutterman DD (2009) Vascular control in humans: focus on the coronary microcirculation. Basic Res Cardiol 104:211–227. doi:10.1007/s00395-009-0775-y

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Terata K, Rusch NJ, Gutterman DD (2001) High glucose impairs voltage-gated K+ channel current in rat small coronary arteries. Circ Res 89:146–152. doi:10.1161/hh1401.093294

    Article  CAS  PubMed  Google Scholar 

  29. Miyashiro JK, Feigl EO (1993) Feedforward control of coronary blood flow via coronary beta-receptor stimulation. Circ Res 73:252–263. doi:10.1161/01.RES.73.2.252

    Article  CAS  PubMed  Google Scholar 

  30. Mokelke EA, Hu Q, Song M, Toro L, Reddy HK, Sturek M (2003) Altered functional coupling of coronary K+ channels in diabetic dyslipidemic pigs is prevented by exercise. J Appl Physiol 95:1179–1193. doi:10.1152/japplphysiol.00972.2002

    Article  CAS  PubMed  Google Scholar 

  31. Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, Hakobyan T, Kmetz JG, Bratz I, Luli J, Nagane M, Khan N, Hou H, Kuppusamy P, Graham J, Fu FS, Janota D, Oyewumi MO, Logan SJ, Lindner JR, Chilian WM (2015) Requisite role of KV1.5 channels in coronary metabolic dilation. Circ Res. doi:10.1161/CIRCRESAHA.115.306642

    PubMed  Google Scholar 

  32. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271. doi:10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

  33. Robbers LF, Eerenberg ES, Teunissen PF, Jansen MF, Hollander MR, Horrevoets AJ, Knaapen P, Nijveldt R, Heymans MW, Levi MM, van Rossum AC, Niessen HW, Marcu CB, Beek AM, van Royen N (2013) Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J 34:2346–2353. doi:10.1093/eurheartj/eht100

    Article  CAS  PubMed  Google Scholar 

  34. Rogers PA, Chilian WM, Bratz IN, Bryan RM Jr, Dick GM (2007) H2O2 activates redox- and 4-aminopyridine-sensitive KV channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292:H1404–H1411. doi:10.1152/ajpheart.00696.2006

    Article  CAS  PubMed  Google Scholar 

  35. Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, Swafford AN Jr, Saitoh S, Tune JD, Chilian WM (2006) H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+ channels. Am J Physiol Heart Circ Physiol 291:H2473–H2482. doi:10.1152/ajpheart.00172.2006

    Article  CAS  PubMed  Google Scholar 

  36. Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26:2614–2621. doi:10.1161/01.ATV.0000249408.55796.da

    Article  CAS  PubMed  Google Scholar 

  37. Setty S, Sun W, Tune JD (2003) Coronary blood flow regulation in the prediabetic metabolic syndrome. Basic Res Cardiol 98:416–423. doi:10.1007/s00395-003-0418-7

    Article  PubMed  Google Scholar 

  38. Tune JD (2014) Coronary circulation. Colloquium series on integrated systems physiology: from molecule to function, vol 6, pp 1–189. doi:10.4199/C00111ED1V01Y201406ISP054

  39. Volk KA, Matsuda JJ, Shibata EF (1991) A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells. J Physiol 439:751–768. doi:10.1113/jphysiol.1991.sp018691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by U01HL118738 (G. Kassab) and R01HL11760 (J. Tune). Dr. Goodwill was supported by the American Heart Association 13POST1681001813. Ms. Noblet and Mr. Sassoon were supported by TL1 TR000162 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Dick.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodwill, A.G., Noblet, J.N., Sassoon, D. et al. Critical contribution of KV1 channels to the regulation of coronary blood flow. Basic Res Cardiol 111, 56 (2016). https://doi.org/10.1007/s00395-016-0575-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0575-0

Keywords

Navigation