Skip to main content

Advertisement

Log in

Nitroglycerin induces DNA damage and vascular cell death in the setting of nitrate tolerance

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Nitroglycerin (GTN) and other organic nitrates are widely used vasodilators. Their side effects are development of nitrate tolerance and endothelial dysfunction. Given the potential of GTN to induce nitro-oxidative stress, we investigated the interaction between nitro-oxidative DNA damage and vascular dysfunction in experimental nitrate tolerance. Cultured endothelial hybridoma cells (EA.hy 926) and Wistar rats were treated with GTN (ex vivo: 10–1000 µM; in vivo: 10, 20 and 50 mg/kg/day for 3 days, s.c.). The level of DNA strand breaks, 8-oxoguanine and O 6-methylguanine DNA adducts was determined by Comet assay, dot blot and immunohistochemistry. Vascular function was determined by isometric tension recording. DNA adducts and strand breaks were induced by GTN in cells in vitro in a concentration-dependent manner. GTN in vivo administration leads to endothelial dysfunction, nitrate tolerance, aortic and cardiac oxidative stress, formation of DNA adducts, stabilization of p53 and apoptotic death of vascular cells in a dose-dependent fashion. Mice lacking O 6-methylguanine-DNA methyltransferase displayed more vascular O 6-methylguanine adducts and oxidative stress under GTN therapy than wild-type mice. Although we were not able to prove a causal role of DNA damage in the etiology of nitrate tolerance, the finding of GTN-induced DNA damage such as the mutagenic and toxic adduct O 6-methylguanine, and cell death supports the notion that GTN based therapy may provoke adverse side effects, including endothelial function. Further studies are warranted to clarify whether GTN pro-apoptotic effects are related to an impaired recovery of patients upon myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

t-BOOH:

Tert-butyl hydroperoxide

DEA/NO:

Diethylamine NONOate

DHE:

Dihydroethidium

EPR:

Electron paramagnetic resonance spectroscopy

eNOS:

Endothelial ·NO synthase (type 3)

ECL:

Enhanced chemiluminescence

EtOH:

Ethanol

GTN:

Glyceryl trinitrate (nitroglycerin)

IHC:

Immuno-histochemistry

ISMN:

Isosorbide-5-mononitrate

L-012:

8-Amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H)dione sodium salt

MGMT:

O 6-methylguanine-DNA methyltransferase

·NO:

Nitric oxide

Hb-NO:

Nitrosyl-iron hemoglobin

3NT:

3-Nitrotyrosine

O 6-me-G:

O 6-methylguanine

8-oxo-G:

8-Oxoguanine

RONS:

Reactive oxygen and nitrogen species

SDS-Page:

Sodium dodecyl sulfate-polyacrylamide electrophoresis

O2 ·− :

Superoxide anion radical

References

  1. Andreassi MG, Botto N, Simi S, Casella M, Manfredi S, Lucarelli M, Venneri L, Biagini A, Picano E (2005) Diabetes and chronic nitrate therapy as co-determinants of somatic DNA damage in patients with coronary artery disease. J Mol Med (Berl) 83:279–286. doi:10.1007/s00109-005-0634-8

    Article  CAS  Google Scholar 

  2. Andreassi MG, Picano E, Del Ry S, Botto N, Colombo MG, Giannessi D, Lubrano V, Vassalle C, Biagini A (2001) Chronic long-term nitrate therapy: possible cytogenetic effect in humans? Mutagenesis 16:517–521. doi:10.1093/mutage/16.6.517

    Article  CAS  PubMed  Google Scholar 

  3. Bice JS, Jones BR, Chamberlain GR, Baxter GF (2016) Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: a systematic review of experimental and clinical studies. Basic Res Cardiol 111:23. doi:10.1007/s00395-016-0540-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bliksoen M, Mariero LH, Torp MK, Baysa A, Ytrehus K, Haugen F, Seljeflot I, Vaage J, Valen G, Stenslokken KO (2016) Extracellular mtDNA activates NF-kappaB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol 111:42. doi:10.1007/s00395-016-0553-6

    Article  PubMed  Google Scholar 

  5. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S, Zeiher AM (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108:2212–2218. doi:10.1161/01.CIR.0000095788.78169.AF

    Article  CAS  PubMed  Google Scholar 

  6. Daiber A, Oelze M, August M, Wendt M, Sydow K, Wieboldt H, Kleschyov AL, Munzel T (2004) Detection of superoxide and peroxynitrite in model systems and mitochondria by the luminol analogue L-012. Free Radic Res 38:259–269. doi:10.1080/10715760410001659773

    Article  CAS  PubMed  Google Scholar 

  7. Daiber A, Oelze M, Coldewey M, Bachschmid M, Wenzel P, Sydow K, Wendt M, Kleschyov AL, Stalleicken D, Ullrich V, Mulsch A, Munzel T (2004) Oxidative stress and mitochondrial aldehyde dehydrogenase activity: a comparison of pentaerythritol tetranitrate with other organic nitrates. Mol Pharmacol 66:1372–1382. doi:10.1124/mol.104.002600

    Article  CAS  PubMed  Google Scholar 

  8. Daiber A, Oelze M, Sulyok S, Coldewey M, Schulz E, Treiber N, Hink U, Mulsch A, Scharffetter-Kochanek K, Munzel T (2005) Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD+/−): a novel approach to assess the role of oxidative stress for the development of nitrate tolerance. Mol Pharmacol 68:579–588. doi:10.1124/mol.105.011585

    CAS  PubMed  Google Scholar 

  9. Davidson A, Veillard AS, Tognela A, Chan MM, Hughes BG, Boyer M, Briscoe K, Begbie S, Abdi E, Crombie C, Long J, Boyce A, Lewis CR, Varma S, Broad A, Muljadi N, Chinchen S, Espinoza D, Coskinas X, Pavlakis N, Millward M, Stockler MR, Australasian Lung cancer Trials G, Australasian Lung cancer Trials Group A (2015) A phase III randomized trial of adding topical nitroglycerin to first-line chemotherapy for advanced nonsmall-cell lung cancer: the Australasian lung cancer trials group NITRO trial. Ann Oncol 26:2280–2286. doi:10.1093/annonc/mdv373

    Article  CAS  PubMed  Google Scholar 

  10. DiFabio JM, Thomas GR, Zucco L, Kuliszewski MA, Bennett BM, Kutryk MJ, Parker JD (2006) Nitroglycerin attenuates human endothelial progenitor cell differentiation, function, and survival. J Pharmacol Exp Ther 318:117–123. doi:10.1124/jpet.106.102129

    Article  CAS  PubMed  Google Scholar 

  11. Dörsam B, Wu CF, Efferth T, Kaina B, Fahrer J (2015) The eucalyptus oil ingredient 1,8-cineol induces oxidative DNA damage. Arch Toxicol 89:797–805. doi:10.1007/s00204-014-1281-z

    Article  PubMed  Google Scholar 

  12. Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Esplugues JV, Rocha M, Nunez C, Bosca I, Ibiza S, Herance JR, Ortega A, Serrador JM, D’Ocon P, Victor VM (2006) Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants. Circ Res 99:1067–1075. doi:10.1161/01.RES.0000250430.62775.99

    Article  CAS  PubMed  Google Scholar 

  14. Fahrer J, Frisch J, Nagel G, Kraus A, Dorsam B, Thomas AD, Reissig S, Waisman A, Kaina B (2015) DNA repair by MGMT, but not AAG, causes a threshold in alkylation-induced colorectal carcinogenesis. Carcinogenesis 36:1235–1244. doi:10.1093/carcin/bgv114

    Article  PubMed  Google Scholar 

  15. Fahrer J, Huelsenbeck J, Jaurich H, Dorsam B, Frisan T, Eich M, Roos WP, Kaina B, Fritz G (2014) Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts. DNA Repair (Amst) 18:31–43. doi:10.1016/j.dnarep.2014.03.002

    Article  CAS  Google Scholar 

  16. Fahrer J, Kaina B (2013) O 6-methylguanine-DNA methyltransferase in the defense against N-nitroso compounds and colorectal cancer. Carcinogenesis 34:2435–2442. doi:10.1093/carcin/bgt275

    Article  CAS  PubMed  Google Scholar 

  17. Fan Q, Gao F, Zhang L, Christopher TA, Lopez BL, Ma XL (2005) Nitrate tolerance aggravates postischemic myocardial apoptosis and impairs cardiac functional recovery after ischemia. Apoptosis 10:1235–1242. doi:10.1007/s10495-005-1455-5

    Article  CAS  PubMed  Google Scholar 

  18. Felley-Bosco E (1998) Role of nitric oxide in genotoxicity: implication for carcinogenesis. Cancer Metastasis Rev 17:25–37. doi:10.1023/A:1005948420548

    Article  CAS  PubMed  Google Scholar 

  19. Ferreira JC, Mochly-Rosen D (2012) Nitroglycerin use in myocardial infarction patients. Circ J 76:15–21. doi:10.1253/circj.CJ-11-1133

    Article  CAS  PubMed  Google Scholar 

  20. Freedman SB, Daxini BV, Noyce D, Kelly DT (1995) Intermittent transdermal nitrates do not improve ischemia in patients taking beta-blockers or calcium antagonists: potential role of rebound ischemia during the nitrate-free period. J Am Coll Cardiol 25:349–355. doi:10.1016/0735-1097(94)00416-N

    Article  CAS  PubMed  Google Scholar 

  21. Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12:104–120. doi:10.1038/nrc3185

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Glassner BJ, Weeda G, Allan JM, Broekhof JL, Carls NH, Donker I, Engelward BP, Hampson RJ, Hersmus R, Hickman MJ, Roth RB, Warren HB, Wu MM, Hoeijmakers JH, Samson LD (1999) DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents. Mutagenesis 14:339–347. doi:10.1093/mutage/14.3.339

    Article  CAS  PubMed  Google Scholar 

  23. Green IC, Cunningham JM, Delaney CA, Elphick MR, Mabley JG, Green MH (1994) Effects of cytokines and nitric oxide donors on insulin secretion, cyclic GMP and DNA damage: relation to nitric oxide production. Biochem Soc Trans 22:30–37. doi:10.1042/bst0220030

    Article  CAS  PubMed  Google Scholar 

  24. Guarini G, Kiyooka T, Ohanyan V, Pung YF, Marzilli M, Chen YR, Chen CL, Kang PT, Hardwick JP, Kolz CL, Yin L, Wilson GL, Shokolenko I, Dobson JG Jr, Fenton R, Chilian WM (2016) Impaired coronary metabolic dilation in the metabolic syndrome is linked to mitochondrial dysfunction and mitochondrial DNA damage. Basic Res Cardiol 111:29. doi:10.1007/s00395-016-0547-4

    Article  PubMed  Google Scholar 

  25. Heusch G (2001) Nitroglycerin and delayed preconditioning in humans: yet another new mechanism for an old drug? Circulation 103:2876–2878. doi:10.1161/01.CIR.103.24.2876

    Article  CAS  PubMed  Google Scholar 

  26. Jabs A, Oelze M, Mikhed Y, Stamm P, Kroller-Schon S, Welschof P, Jansen T, Hausding M, Kopp M, Steven S, Schulz E, Stasch JP, Munzel T, Daiber A (2015) Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats. Vascul Pharmacol 71:181–191. doi:10.1016/j.vph.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  27. Janero DR, Bryan NS, Saijo F, Dhawan V, Schwalb DJ, Warren MC, Feelisch M (2004) Differential nitros(yl)ation of blood and tissue constituents during glyceryl trinitrate biotransformation in vivo. Proc Natl Acad Sci USA 101:16958–16963. doi:10.1073/pnas.0406075101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanamasa K, Hayashi T, Kimura A, Ikeda A, Ishikawa K (2002) Long-term, continuous treatment with both oral and transdermal nitrates increases cardiac events in healed myocardial infarction patients. Angiology 53:399–408. doi:10.1177/000331970205300405

    Article  PubMed  Google Scholar 

  29. Kiziltepe T, Hideshima T, Ishitsuka K, Ocio EM, Raje N, Catley L, Li CQ, Trudel LJ, Yasui H, Vallet S, Kutok JL, Chauhan D, Mitsiades CS, Saavedra JE, Wogan GN, Keefer LK, Shami PJ, Anderson KC (2007) JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110:709–718. doi:10.1182/blood-2006-10-052845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kleinbongard P, Thielmann M, Jakob H, Peters J, Heusch G, Kottenberg E (2013) Nitroglycerin does not interfere with protection by remote ischemic preconditioning in patients with surgical coronary revascularization under isoflurane anesthesia. Cardiovasc Drugs Ther 27:359–361. doi:10.1007/s10557-013-6451-3

    Article  PubMed  Google Scholar 

  31. Knorr M, Hausding M, Kroller-Schuhmacher S, Steven S, Oelze M, Heeren T, Scholz A, Gori T, Wenzel P, Schulz E, Daiber A, Munzel T (2011) Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-Glutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan. Arterioscler Thromb Vasc Biol 31:2223–2231. doi:10.1161/ATVBAHA.111.232058

    Article  CAS  PubMed  Google Scholar 

  32. Kroller-Schon S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinssius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Munzel T, Daiber A (2014) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal 20:247–266. doi:10.1089/ars.2012.4953

    Article  PubMed  PubMed Central  Google Scholar 

  33. Laval F, Wink DA (1994) Inhibition by nitric oxide of the repair protein, O 6-methylguanine-DNA-methyltransferase. Carcinogenesis 15:443–447. doi:10.1093/carcin/15.3.443

    Article  CAS  PubMed  Google Scholar 

  34. Liu RH, Hotchkiss JH (1995) Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 339:73–89. doi:10.1016/0165-1110(95)90004-7

    Article  CAS  PubMed  Google Scholar 

  35. Meira LB, Calvo JA, Shah D, Klapacz J, Moroski-Erkul CA, Bronson RT, Samson LD (2014) Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst) 21:78–86. doi:10.1016/j.dnarep.2014.05.012

    Article  CAS  Google Scholar 

  36. Mikhed Y, Daiber A, Steven S (2015) Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int J Mol Sci 16:15918–15953. doi:10.3390/ijms160715918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mikhed Y, Gorlach A, Knaus UG, Daiber A (2015) Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 5:275–289. doi:10.1016/j.redox.2015.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munzel T, Daiber A, Gori T (2013) More answers to the still unresolved question of nitrate tolerance. Eur Heart J 34:2666–2673. doi:10.1093/eurheartj/eht249

    Article  PubMed  Google Scholar 

  39. Munzel T, Daiber A, Gori T (2011) Nitrate therapy: new aspects concerning molecular action and tolerance. Circulation 123:2132–2144. doi:10.1161/CIRCULATIONAHA.110.981407

    Article  PubMed  Google Scholar 

  40. Munzel T, Li H, Mollnau H, Hink U, Matheis E, Hartmann M, Oelze M, Skatchkov M, Warnholtz A, Duncker L, Meinertz T, Forstermann U (2000) Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res 86:E7–E12. doi:10.1161/01.RES.86.1.e7

    Article  CAS  PubMed  Google Scholar 

  41. Munzel T, Mollnau H, Hartmann M, Geiger C, Oelze M, Warnholtz A, Yehia AH, Forstermann U, Meinertz T (2000) Effects of a nitrate-free interval on tolerance, vasoconstrictor sensitivity and vascular superoxide production. J Am Coll Cardiol 36:628–634. doi:10.1016/S0735-1097(00)00754-3

    Article  CAS  PubMed  Google Scholar 

  42. Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG (1995) Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 95:187–194. doi:10.1172/JCI117637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Munzel T, Wenzel P, Daiber A (2007) Do we still need organic nitrates? J Am Coll Cardiol 49:1296–1298. doi:10.1016/j.jacc.2007.01.007

    Article  PubMed  Google Scholar 

  44. Nakamura Y, Moss AJ, Brown MW, Kinoshita M, Kawai C (1999) Long-term nitrate use may be deleterious in ischemic heart disease: a study using the databases from two large-scale postinfarction studies. Multicenter Myocardial Ischemia Research Group. Am Heart J 138:577–585. doi:10.1016/S0002-8703(99)70163-8

    Article  CAS  PubMed  Google Scholar 

  45. Nehls P, Adamkiewicz J, Rajewsky MF (1984) Immuno-slot-blot: a highly sensitive immunoassay for the quantitation of carcinogen-modified nucleosides in DNA. J Cancer Res Clin Oncol 108:23–29. doi:10.1007/BF00390969

    Article  CAS  PubMed  Google Scholar 

  46. Oelze M, Daiber A, Brandes RP, Hortmann M, Wenzel P, Hink U, Schulz E, Mollnau H, von Sandersleben A, Kleschyov AL, Mulsch A, Li H, Forstermann U, Munzel T (2006) Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension 48:677–684. doi:10.1161/01.HYP.0000239207.82326.29

    Article  CAS  PubMed  Google Scholar 

  47. Oelze M, Knorr M, Kroller-Schon S, Kossmann S, Gottschlich A, Rummler R, Schuff A, Daub S, Doppler C, Kleinert H, Gori T, Daiber A, Munzel T (2013) Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression. Eur Heart J 34:3206–3216. doi:10.1093/eurheartj/ehs100

    Article  CAS  PubMed  Google Scholar 

  48. Parker JD, Parker AB, Farrell B, Parker JO (1995) Intermittent transdermal nitroglycerin therapy. Decreased anginal threshold during the nitrate-free interval. Circulation 91:973–978. doi:10.1161/01.CIR.91.4.973

    Article  CAS  PubMed  Google Scholar 

  49. Rassaf T, Weber C, Bernhagen J (2014) Macrophage migration inhibitory factor in myocardial ischaemia/reperfusion injury. Cardiovasc Res 102:321–328. doi:10.1093/cvr/cvu071

    Article  CAS  PubMed  Google Scholar 

  50. Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, LeWinter MM, Joseph SM, Shah SJ, Semigran MJ, Felker GM, Cole RT, Reeves GR, Tedford RJ, Tang WH, McNulty SE, Velazquez EJ, Shah MR, Braunwald E, Network NHFCR (2015) Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med 373:2314–2324. doi:10.1056/NEJMoa1510774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roos WP, Kaina B (2013) DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 332:237–248. doi:10.1016/j.canlet.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  52. Schuhmacher S, Foretz M, Knorr M, Jansen T, Hortmann M, Wenzel P, Oelze M, Kleschyov AL, Daiber A, Keaney JF Jr, Wegener G, Lackner K, Munzel T, Viollet B, Schulz E (2011) alpha1AMP-activated protein kinase preserves endothelial function during chronic angiotensin II treatment by limiting Nox2 upregulation. Arterioscler Thromb Vasc Biol 31:560–566. doi:10.1161/ATVBAHA.110.219543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuhmacher S, Schulz E, Oelze M, Konig A, Roegler C, Lange K, Sydow L, Kawamoto T, Wenzel P, Munzel T, Lehmann J, Daiber A (2009) A new class of organic nitrates: investigations on bioactivation, tolerance and cross-tolerance phenomena. Br J Pharmacol 158:510–520. doi:10.1111/j.1476-5381.2009.00303.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Speit G, Schutz P, Bonzheim I, Trenz K, Hoffmann H (2004) Sensitivity of the FPG protein towards alkylation damage in the comet assay. Toxicol Lett 146:151–158. doi:10.1016/j.toxlet.2003.09.010

    Article  CAS  PubMed  Google Scholar 

  55. Spieker LE, Flammer AJ, Luscher TF (2006) The vascular endothelium in hypertension. Handb Exp Pharmacol. doi:10.1007/3-540-36028-X

    PubMed  Google Scholar 

  56. Sunjog K, Kolarevic S, Heberger K, Gacic Z, Knezevic-Vukcevic J, Vukovic-Gacic B, Lenhardt M (2013) Comparison of comet assay parameters for estimation of genotoxicity by sum of ranking differences. Anal Bioanal Chem 405:4879–4885. doi:10.1007/s00216-013-6909-y

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki T, Harashima H, Kamiya H (2010) Effects of base excision repair proteins on mutagenesis by 8-oxo-7,8-dihydroguanine (8-hydroxyguanine) paired with cytosine and adenine. DNA Repair (Amst) 9:542–550. doi:10.1016/j.dnarep.2010.02.004

    Article  CAS  Google Scholar 

  58. Sydow K, Daiber A, Oelze M, Chen Z, August M, Wendt M, Ullrich V, Mulsch A, Schulz E, Keaney JF Jr, Stamler JS, Munzel T (2004) Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest 113:482–489. doi:10.1172/JCI19267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei W, Li B, Hanes MA, Kakar S, Chen X, Liu L (2010) S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci Transl Med 2:19. doi:10.1126/scitranslmed.3000328

    Google Scholar 

  60. Wenzel P, Mollnau H, Oelze M, Schulz E, Wickramanayake JM, Muller J, Schuhmacher S, Hortmann M, Baldus S, Gori T, Brandes RP, Munzel T, Daiber A (2008) First evidence for a crosstalk between mitochondrial and NADPH oxidase-derived reactive oxygen species in nitroglycerin-triggered vascular dysfunction. Antioxid Redox Signal 10:1435–1447. doi:10.1089/ars.2007.1969

    Article  CAS  PubMed  Google Scholar 

  61. Werner C, Bohm M, Friedrich EB (2008) Progenitor cell therapy and myocardial infarction: the importance of microvascular function. Nat Clin Pract Cardiovasc Med 5:78–79. doi:10.1038/ncpcardio1058

    Article  PubMed  Google Scholar 

  62. Yasuda H, Yamaya M, Nakayama K, Sasaki T, Ebihara S, Kanda A, Asada M, Inoue D, Suzuki T, Okazaki T, Takahashi H, Yoshida M, Kaneta T, Ishizawa K, Yamanda S, Tomita N, Yamasaki M, Kikuchi A, Kubo H, Sasaki H (2006) Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol 24:688–694. doi:10.1200/JCO.2005.04.0436

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Z, Wang L, Wei S, Liu Z, Wang LE, Sturgis EM, Wei Q (2010) Polymorphisms of the DNA repair gene MGMT and risk and progression of head and neck cancer. DNA Repair (Amst) 9:558–566. doi:10.1016/j.dnarep.2010.02.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Angelica Karpi, Jessica Rudolph, Bettina Mros, Jörg Schreiner, Nicole Glas, Svenja Stroh, Anna Frumkina and Georg Nagel for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Daiber.

Ethics declarations

Sources of funding

Yuliya Mikhed holds a stipend from the International PhD Program on the ‘‘Dynamics of Gene Regulation, Epigenetics and DNA Damage Response’’ from the Institute of Molecular Biology gGmbH, (Mainz, Germany) funded by the Boehringer Ingelheim Foundation. The study was supported by long-lasting funding from the Mainzer Herz Stiftung and the Center for Translational Vascular Biology at the University Medical Center Mainz.

Conflict of interest

The authors declare no competing interests.

Ethical standards

All animal treatments were in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the U.S. National Institutes of Health and approved by the Ethics Commission according to the German Law on the Protection of Animals (Landesunter- suchungsamt Rheinland-Pfalz, Koblenz, Germany: #23 177-07/G12-1-084).

Additional information

Y. Mikhed, J. Fahrer and M. Oelze contributed equally to this work and are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhed, Y., Fahrer, J., Oelze, M. et al. Nitroglycerin induces DNA damage and vascular cell death in the setting of nitrate tolerance. Basic Res Cardiol 111, 52 (2016). https://doi.org/10.1007/s00395-016-0571-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0571-4

Keywords

Navigation