Skip to main content

Advertisement

Log in

Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Recent studies demonstrated that NADPH oxidase 2 (NOX2) expression in myocardium after ischemia–reperfusion (IR) is significantly upregulated. However, the underlying mechanisms remain unknown. This study aims to determine if nuclear cardiac myosin light chain 2 (MYL2), a well-known regulatory subunit of myosin, functions as a transcription factor to promote NOX2 expression following myocardial IR in a phosphorylation-dependent manner. We examined the phosphorylation status of nuclear MYL2 (p-MYL2) in a rat model of myocardial IR (left main coronary artery subjected to 1 h ligation and 3 h reperfusion) injury, which showed IR injury and upregulated NOX2 expression as expected, accompanied by elevated H2O2 and nuclear p-MYL2 levels; these effects were attenuated by inhibition of myosin light chain kinase (MLCK). Next, we explored the functional relationship of nuclear p-MYL2 with NOX2 expression in H9c2 cell model of hypoxia-reoxygenation (HR) injury. In agreement with our in vivo findings, HR treatment increased apoptosis, NOX2 expression, nuclear p-MYL2 and H2O2 levels, and the increases were ameliorated by inhibition of MLCK or knockdown of MYL2. Finally, molecular biology techniques including co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), DNA pull-down and luciferase reporter gene assay were utilized to decipher the molecular mechanisms. We found that nuclear p-MYL2 binds to the consensus sequence AGCTCC in NOX2 gene promoter, interacts with RNA polymerase II and transcription factor IIB to form a transcription preinitiation complex, and thus activates NOX2 gene transcription. Our results demonstrate that nuclear MYL2 plays an important role in IR injury by transcriptionally upregulating NOX2 expression to enhance oxidative stress in a phosphorylation-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J (2010) Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106:1253–1264. doi:10.1161/CIRCRESAHA.109.213116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072. doi:10.1074/jbc.M403046200

    Article  CAS  PubMed  Google Scholar 

  3. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. doi:10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  4. Borejdo J, Ushakov DS, Akopova I (2002) Regulatory and essential light chains of myosin rotate equally during contraction of skeletal muscle. Biophys J 82:3150–3159. doi:10.1016/S0006-3495(02)75657-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bou R, Codony R, Tres A, Decker EA, Guardiola F (2008) Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method’s performance. Anal Biochem 377:1–15. doi:10.1016/j.ab.2008.02.029

    Article  CAS  PubMed  Google Scholar 

  6. Brandes RP, Weissmann N, Schroder K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med 49:687–706. doi:10.1016/j.freeradbiomed.2010.04.030

    Article  CAS  PubMed  Google Scholar 

  7. Braunersreuther V, Montecucco F, Asrih M, Pelli G, Galan K, Frias M, Burger F, Quindere AL, Montessuit C, Krause KH, Mach F, Jaquet V (2013) Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 64:99–107. doi:10.1016/j.yjmcc.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  8. Caremani M, Melli L, Dolfi M, Lombardi V, Linari M (2013) The working stroke of the myosin II motor in muscle is not tightly coupled to release of orthophosphate from its active site. J Physiol 591:5187–5205. doi:10.1113/jphysiol.2013.257410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. de Lanerolle P (2012) Nuclear actin and myosins at a glance. J Cell Sci 125:4945–4949. doi:10.1242/jcs.099754

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hafstad AD, Nabeebaccus AA, Shah AM (2013) Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 108:359. doi:10.1007/s00395-013-0359-8

    Article  PubMed  Google Scholar 

  11. Huynh K, Kiriazis H, Du XJ, Love JE, Gray SP, Jandeleit-Dahm KA, McMullen JR, Ritchie RH (2013) Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 60:307–317. doi:10.1016/j.freeradbiomed.2013.02.021

    Article  CAS  PubMed  Google Scholar 

  12. Josephson MP, Sikkink LA, Penheiter AR, Burghardt TP, Ajtai K (2011) Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain. Biochem Biophys Res Commun 416:367–371. doi:10.1016/j.bbrc.2011.11.044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kiani FA, Fischer S (2014) Catalytic strategy used by the myosin motor to hydrolyze ATP. Proc Natl Acad Sci USA. doi:10.1073/pnas.1401862111

    PubMed Central  PubMed  Google Scholar 

  14. Kleikers PW, Wingler K, Hermans JJ, Diebold I, Altenhofer S, Radermacher KA, Janssen B, Gorlach A, Schmidt HH (2012) NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berl) 90:1391–1406. doi:10.1007/s00109-012-0963-3

    Article  CAS  Google Scholar 

  15. Krijnen PA, Meischl C, Hack CE, Meijer CJ, Visser CA, Roos D, Niessen HW (2003) Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol 56:194–199. doi:10.1136/jcp.56.3.194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Li Q, Sarna SK (2009) Nuclear myosin II regulates the assembly of preinitiation complex for ICAM-1 gene transcription. Gastroenterology 137:1051–1060. doi:10.1053/j.gastro.2009.03.040 (1060 e1051–e1053)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lin HB, Cadete VJ, Sawicka J, Wozniak M, Sawicki G (2012) Effect of the myosin light chain kinase inhibitor ML-7 on the proteome of hearts subjected to ischemia-reperfusion injury. J Proteomics 75:5386–5395. doi:10.1016/j.jprot.2012.06.016

    Article  CAS  PubMed  Google Scholar 

  18. Martindale JJ, Metzger JM (2014) Uncoupling of increased cellular oxidative stress and myocardial ischemia reperfusion injury by directed sarcolemma stabilization. J Mol Cell Cardiol 67:26–37. doi:10.1016/j.yjmcc.2013.12.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Matsushima S, Tsutsui H, Sadoshima J (2014) Physiological and pathological functions of NADPH oxidases during myocardial ischemia–reperfusion. Trends Cardiovasc Med. doi:10.1016/j.tcm.2014.03.003

    PubMed Central  PubMed  Google Scholar 

  20. Moss RL, Fitzsimons DP (2006) Myosin light chain 2 into the mainstream of cardiac development and contractility. Circ Res 99:225–227. doi:10.1161/01.RES.0000236793.88131.dc

    Article  CAS  PubMed  Google Scholar 

  21. Murdoch CE, Alom-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, Brewer A, Shah AM (2011) Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106:527–538. doi:10.1007/s00395-011-0179-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y, Tao L (2013) Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol 108:373. doi:10.1007/s00395-013-0373-x

    Article  PubMed  Google Scholar 

  23. Philimonenko VV, Janacek J, Harata M, Hozak P (2010) Transcription-dependent rearrangements of actin and nuclear myosin I in the nucleolus. Histochem Cell Biol 134:243–249. doi:10.1007/s00418-010-0732-8

    Article  CAS  PubMed  Google Scholar 

  24. Rodgers BD (2005) Insulin-like growth factor-I downregulates embryonic myosin heavy chain (eMyHC) in myoblast nuclei. Growth Horm IGF Res 15:377–383. doi:10.1016/j.ghir.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  25. Sarshad A, Sadeghifar F, Louvet E, Mori R, Bohm S, Al-Muzzaini B, Vintermist A, Fomproix N, Ostlund AK, Percipalle P (2013) Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression. PLoS Genet 9:e1003397. doi:10.1371/journal.pgen.1003397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shi Y, Niculescu R, Wang D, Patel S, Davenpeck KL, Zalewski A (2001) Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury. Arterioscler Thromb Vasc Biol 21:739–745. doi:10.1161/01.ATV.21.5.739

    Article  CAS  PubMed  Google Scholar 

  27. Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747. doi:10.1007/s00395-011-0190-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I (2003) Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 5:789–794. doi:10.1089/152308603770380098

    Article  CAS  PubMed  Google Scholar 

  29. Taye A, Saad AH, Kumar AH, Morawietz H (2010) Effect of apocynin on NADPH oxidase-mediated oxidative stress-LOX-1-eNOS pathway in human endothelial cells exposed to high glucose. Eur J Pharmacol 627:42–48. doi:10.1016/j.ejphar.2009.10.045

    Article  CAS  PubMed  Google Scholar 

  30. Tullio F, Angotti C, Perrelli MG, Penna C, Pagliaro P (2013) Redox balance and cardioprotection. Basic Res Cardiol 108:392. doi:10.1007/s00395-013-0392-7

    Article  PubMed  Google Scholar 

  31. van der Vliet A (2008) NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 44:938–955. doi:10.1016/j.freeradbiomed.2007.11.016

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wang M, Zhang J, Walker SJ, Dworakowski R, Lakatta EG, Shah AM (2010) Involvement of NADPH oxidase in age-associated cardiac remodeling. J Mol Cell Cardiol 48:765–772. doi:10.1016/j.yjmcc.2010.01.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Warren SA, Briggs LE, Zeng H, Chuang J, Chang EI, Terada R, Li M, Swanson MS, Lecker SH, Willis MS, Spinale FG, Maupin-Furlowe J, McMullen JR, Moss RL, Kasahara H (2012) Myosin light chain phosphorylation is critical for adaptation to cardiac stress. Circulation 126:2575–2588. doi:10.1161/CIRCULATIONAHA.112.116202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zambelli F, Pesole G, Pavesi G (2009) Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res 37:W247–W252. doi:10.1093/nar/gkp464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhang YS, He L, Liu B, Li NS, Luo XJ, Hu CP, Ma QL, Zhang GG, Li YJ, Peng J (2012) A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia–reperfusion. Basic Res Cardiol 107:266. doi:10.1007/s00395-012-0266-4

    Article  PubMed  Google Scholar 

  36. Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190. doi:10.1016/j.cardiores.2006.02.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91439104 to Jun Peng), National Nature Science Foundation of China (No. 81373409 to Jun Peng; No.81370250 to Qi-Lin Ma), Hunan Provincial Natural Science Foundation of China (No.13JJ2008 to Jun Peng) and Doctoral Fund of Ministry of Education of China (No. 20120162110056 to Jun Peng).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YS., Liu, B., Luo, XJ. et al. Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 110, 38 (2015). https://doi.org/10.1007/s00395-015-0494-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0494-5

Keywords

Navigation