Skip to main content

Advertisement

Log in

Physiological levels of A-, B- and C-type natriuretic peptide shed the endothelial glycocalyx and enhance vascular permeability

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Atrial natriuretic peptide (ANP) is a peptide hormone released from the cardiac atria during hypervolemia. Though named for its well-known renal effect, ANP has been demonstrated to acutely increase vascular permeability in vivo. Experimentally, this phenomenon was associated with a marked shedding of the endothelial glycocalyx, at least for supraphysiological intravascular concentrations. This study investigates the impact and mechanism of action of physiological doses of ANP and related peptides on the vascular barrier. In isolated guinea pig hearts, prepared and perfused in a modified Langendorff mode with and without the intravascular presence of the colloid hydroxyethyl starch (HES), we measured functional changes in vascular permeability and glycocalyx shedding related to intracoronary infusion of physiological concentrations of A-, B- and C-type natriuretic peptide (ANP, BNP and CNP). Significant coronary venous washout of glycocalyx constituents (syndecan-1 and heparan sulfate) was observed. As tested for ANP, this effect was positively related to the intracoronary concentration. Intravascular shedding of the glycocalyx was morphologically confirmed by electron microscopy. Also, functional vascular barrier competence decreased, as indicated by significant increases in transudate formation and HES extravasation. Ortho-phenanthroline, a non-specific inhibitor of matrix metalloproteases, was able to reduce ANP-induced glycocalyx shedding. These findings suggest participation of natriuretic peptides in pathophysiological processes like heart failure, inflammation or sepsis. Inhibition of metalloproteases might serve as a basis for future therapeutical options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Becker BF (1993) Towards the physiological function of uric acid. Free Radic Biol Med 14:615–631

    Article  PubMed  CAS  Google Scholar 

  2. Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105:687–701. doi:10.1007/s00395-010-0118-z

    Article  PubMed  CAS  Google Scholar 

  3. Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P, Becker BF (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999. doi:10.1152/ajpheart.00218.2005

    Article  PubMed  CAS  Google Scholar 

  4. Bruegger D, Schwartz L, Chappell D, Jacob M, Rehm M, Vogeser M, Christ F, Reichart B, Becker BF (2011) Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol 106:1111–1121. doi:10.1007/s00395-011-0203-y

    Article  PubMed  CAS  Google Scholar 

  5. Bunger R, Haddy FJ, Querengasser A, Gerlach E (1975) An isolated guinea pig heart preparation with in vivo like features. Pflugers Arch 353:317–326

    Article  PubMed  CAS  Google Scholar 

  6. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:78–89

    Article  PubMed  CAS  Google Scholar 

  7. Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P, Becker BF (2009) Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res 83:388–396. doi:10.1093/cvr/cvp097

    Article  PubMed  CAS  Google Scholar 

  8. Chappell D, Jacob M, Paul O, Mehringer L, Newman W, Becker BF (2008) Impaired glycocalyx barrier properties and increased capillary tube haematocrit. J Physiol 586:4585–4586. doi:10.1113/jphysiol.2008.160648

    Article  PubMed  CAS  Google Scholar 

  9. Curry FR (2005) Atrial natriuretic peptide: an essential physiological regulator of transvascular fluid, protein transport, and plasma volume. J Clin Invest 115:1458–1461. doi:10.1172/JCI25417

    Article  PubMed  CAS  Google Scholar 

  10. de Bold AJ, Ma KK, Zhang Y, de Bold ML, Bensimon M, Khoshbaten A (2001) The physiological and pathophysiological modulation of the endocrine function of the heart. Can J Physiol Pharmacol 79:705–714. doi:10.1139/y01-038

    Article  PubMed  Google Scholar 

  11. Dore JM, Morard F, Vita N, Wijdenes J (1998) Identification and location on syndecan-1 core protein of the epitopes of B-B2 and B-B4 monoclonal antibodies. FEBS Lett 426:67–70. doi:10.1016/S0014-5793(98)00310-X

    Article  PubMed  CAS  Google Scholar 

  12. Döring HJD H (1988) The isolated perfused warm blooded heart according to Langendorff. Biomesstechnik-Verlag March GmbH

  13. Ellis CG, Jagger J, Sharpe M (2005) The microcirculation as a functional system. Crit Care 9(Suppl 4):S3–S8. doi:10.1186/cc3751

    Article  PubMed  Google Scholar 

  14. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. doi:10.3758/BF03193146

    Article  PubMed  Google Scholar 

  15. Forster H, Wicarkzyk C, Dudziak R (1981) Determination of the plasma elimination of hydroxyethyl starch and dextran using improved analytical methods. Infusionsther Klin Ernahr 8:88–94. doi:10.1159/000221190

    PubMed  CAS  Google Scholar 

  16. Gerber E, Bredy A, Kahl R (1996) Ortho-phenanthroline modulates enzymes of cellular energy metabolism. Toxicology 110:85–93. doi:10.1016/0300-483X(96)03331-8

    Article  PubMed  CAS  Google Scholar 

  17. Hooper NM, Karran EH, Turner AJ (1997) Membrane protein secretases. Biochem J 321(Pt 2):265–279

    PubMed  CAS  Google Scholar 

  18. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150. doi:10.1056/NEJMra021333

    Article  PubMed  CAS  Google Scholar 

  19. Huxley VH, Curry FE, Adamson RH (1987) Quantitative fluorescence microscopy on single capillaries: alpha-lactalbumin transport. Am J Physiol 252:H188–H197

    PubMed  CAS  Google Scholar 

  20. Jacob M, Bruegger D, Rehm M, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586. doi:10.1016/j.cardiores.2006.11.021

    Article  PubMed  CAS  Google Scholar 

  21. Jacob M, Rehm M, Loetsch M, Paul JO, Bruegger D, Welsch U, Conzen P, Becker BF (2007) The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation. J Vasc Res 44:435–443. doi:10.1159/000104871

    Article  PubMed  CAS  Google Scholar 

  22. Koller KJ, Goeddel DV (1992) Molecular biology of the natriuretic peptides and their receptors. Circulation 86:1081–1088. doi:10.1161/01.CIR.86.4.1081

    Article  PubMed  CAS  Google Scholar 

  23. Lee TS, Kolthoff IM, Leussing DL (1948) Reaction of ferrous and ferric ions with 1,10-phenanthroline; kinetics of formation and dissociation of ferrous phenanthroline. J Am Chem Soc 70:3596–3600. doi:10.1021/ja01191a015

    Article  PubMed  CAS  Google Scholar 

  24. Mann GE (1981) Alterations of myocardial capillary permeability by albumin in the isolated, perfused rabbit heart. J Physiol 319:311–323

    PubMed  CAS  Google Scholar 

  25. Marx G, Pedder S, Smith L, Swaraj S, Grime S, Stockdale H, Leuwer M (2004) Resuscitation from septic shock with capillary leakage: hydroxyethyl starch (130 kd), but not Ringer’s solution maintains plasma volume and systemic oxygenation. Shock 21:336–341

    Article  PubMed  CAS  Google Scholar 

  26. Massova I, Kotra LP, Fridman R, Mobashery S (1998) Matrix metalloproteinases: structures, evolution, and diversification. Faseb J 12:1075–1095

    PubMed  CAS  Google Scholar 

  27. Meyer P, Pernet P, Hejblum G, Baudel JL, Maury E, Offenstadt G, Guidet B (2008) Haemodilution induced by hydroxyethyl starches 130/0.4 is similar in septic and non-septic patients. Acta Anaesthesiol Scand 52:229–235. doi:10.1111/j.1399-6576.2007.01521.x

    Article  PubMed  CAS  Google Scholar 

  28. Mulivor AW, Lipowsky HH (2009) Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 16:657–666. doi:10.3109/10739680903133714

    Article  PubMed  CAS  Google Scholar 

  29. Mulivor AW, Lipowsky HH (2002) Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 283:H1282–H1291

    PubMed  CAS  Google Scholar 

  30. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494. doi:10.1074/jbc.274.31.21491

    Article  PubMed  CAS  Google Scholar 

  31. O’Donoghue M, Braunwald E (2010) Natriuretic peptides in heart failure: should therapy be guided by BNP levels? Nat Rev Cardiol 7:13–20. doi:10.1038/nrcardio.2009.197

    Article  PubMed  Google Scholar 

  32. Panayiotou CM, Baliga R, Stidwill R, Taylor V, Singer M, Hobbs AJ (2010) Resistance to endotoxic shock in mice lacking natriuretic peptide receptor-A. Br J Pharmacol 160:2045–2054. doi:10.1111/j.1476-5381.2010.00830.x

    Article  PubMed  CAS  Google Scholar 

  33. Persson J, Grande PO (2006) Plasma volume expansion and transcapillary fluid exchange in skeletal muscle of albumin, dextran, gelatin, hydroxyethyl starch, and saline after trauma in the cat. Crit Care Med 34:2456–2462. doi:10.1097/01.CCM.0000233876.87978.AB

    Article  PubMed  CAS  Google Scholar 

  34. Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol 176:1–40

    Article  PubMed  Google Scholar 

  35. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666

    Article  PubMed  CAS  Google Scholar 

  36. Rehm M, Zahler S, Lotsch M, Welsch U, Conzen P, Jacob M, Becker BF (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6 % hydroxyethyl starch or 5 % albumin solutions in the coronary vascular bed. Anesthesiology 100:1211–1223. doi:10.1097/00000542-200405000-00025

    Article  PubMed  CAS  Google Scholar 

  37. Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, Zwiener M, Baba HA, Yanagisawa M, Kuhn M (2005) Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest 115:1666–1674. doi:10.1172/JCI23360

    Article  PubMed  CAS  Google Scholar 

  38. Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci USA 101:16483–16488. doi:10.1073/pnas.0407474101

    Article  PubMed  CAS  Google Scholar 

  39. van der Heijden M, Verheij JMD, van Nieuw Amerongen GP, Groeneveld AB (2009) Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia. Crit Care Med 37:1275–1281. doi:10.1097/CCM.0b013e31819cedfd

    Article  PubMed  Google Scholar 

  40. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. doi:10.1161/01.RES.0000070112.80711.3D

    Article  PubMed  CAS  Google Scholar 

  41. Vogel J, Sperandio M, Pries AR, Linderkamp O, Gaehtgens P, Kuschinsky W (2000) Influence of the endothelial glycocalyx on cerebral blood flow in mice. J Cereb Blood Flow Metab 20:1571–1578. doi:10.1097/00004647-200011000-00007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Dr. Barbara Jacob for expert statistical assistance. The study was performed using departmental resources of the Department of Anesthesiology, University Hospital Munich, Germany and the Walter-Brendel-Centre of Experimental Medicine, LMU Munich, Germany.

Conflicts of interest

None of the authors have any conflicts of interest in connection with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Jacob.

Additional information

M. Jacob and T. Saller contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, M., Saller, T., Chappell, D. et al. Physiological levels of A-, B- and C-type natriuretic peptide shed the endothelial glycocalyx and enhance vascular permeability. Basic Res Cardiol 108, 347 (2013). https://doi.org/10.1007/s00395-013-0347-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0347-z

Keywords

Navigation