Skip to main content

Advertisement

Log in

Neuronal nitric oxide synthase is indispensable for the cardiac adaptive effects of exercise

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Exercise results in beneficial adaptations of the heart that can be directly observed at the ventricular myocyte level. However, the molecular mechanism(s) responsible for these adaptations are not well understood. Interestingly, signaling via neuronal nitric oxide synthase (NOS1) within myocytes results in similar effects as exercise. Thus, the objective was to define the role NOS1 plays in the exercise-induced beneficial contractile effects in myocytes. After an 8-week aerobic interval training program, exercise-trained (Ex) mice had higher VO2max and cardiac hypertrophy compared to sedentary (Sed) mice. Ventricular myocytes from Ex mice had increased NOS1 expression and nitric oxide production compared to myocytes from Sed mice. Remarkably, acute NOS1 inhibition normalized the enhanced contraction (shortening and Ca2+ transients) in Ex myocytes to Sed levels. The NOS1 effect on contraction was mediated via greater Ca2+ cycling that resulted from increased phospholamban phosphorylation. Intriguingly, a similar aerobic interval training program on NOS1 knockout mice failed to produce any beneficial cardiac adaptations (VO2max, hypertrophy, and contraction). These data demonstrate that the beneficial cardiac adaptations observed after exercise training were mediated via enhanced NOS1 signaling. Therefore, it is likely that beneficial effects of exercise may be mimicked by the interventions that increase NOS1 signaling. This pathway may provide a potential novel therapeutic target in cardiac patients who are unable or unwilling to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339. doi:10.1038/416005a

    Article  PubMed  CAS  Google Scholar 

  2. Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84. doi:10.1097/00005768-200001000-00012

    PubMed  Google Scholar 

  3. Brookes PS (2004) Mitochondrial nitric oxide synthase. Mitochondrion 3:187–204. doi:10.1016/j.mito.2003.10.001

    Article  PubMed  CAS  Google Scholar 

  4. Burkard N, Williams T, Czolbe M, Blomer N, Panther F, Link M, Fraccarollo D, Widder JD, Hu K, Han H, Hofmann U, Frantz S, Nordbeck P, Bulla J, Schuh K, Ritter O (2010) Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion. Circulation 122:1588–1603. doi:10.1161/CIRCULATIONAHA.109.933630

    Article  PubMed  CAS  Google Scholar 

  5. Catalucci D, Latronico MV, Ellingsen O, Condorelli G (2008) Physiological myocardial hypertrophy: how and why? Front Biosci 13:312–324. doi:10.2741/2681

    Article  PubMed  CAS  Google Scholar 

  6. Copp SW, Hirai DM, Schwagerl PJ, Musch TI, Poole DC (2010) Effects of neuronal nitric oxide synthase inhibition on resting and exercising hindlimb muscle blood flow in the rat. J Physiol 588:1321–1331. doi:10.1113/jphysiol.2009.183723

    Article  PubMed  CAS  Google Scholar 

  7. Dabire H, Barthelemy I, Blanchard-Gutton N, Sambin L, Sampedrano CC, Gouni V, Unterfinger Y, Aguilar P, Thibaud JL, Ghaleh B, Bize A, Pouchelon JL, Blot S, Berdeaux A, Hittinger L, Chetboul V, Su JB (2012) Vascular endothelial dysfunction in Duchenne muscular dystrophy is restored by bradykinin through upregulation of eNOS and nNOS. Basic Res Cardiol 107:240–246. doi:10.1007/s00395-011-0240-6

    Article  PubMed  Google Scholar 

  8. Dawson D, Lygate CA, Zhang MH, Hulbert K, Neubauer S, Casadei B (2005) nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation 112:3729–3737. doi:10.1161/CIRCULATIONAHA.105.539437

    Article  PubMed  CAS  Google Scholar 

  9. Ericsson M, Sjaland C, Andersson KB, Sjaastad I, Christensen G, Sejersted OM, Ellingsen O (2010) Exercise training before cardiac-specific Serca2 disruption attenuates the decline in cardiac function in mice. J Appl Physiol 109:1749–1755. doi:10.1152/japplphysiol.00282.2010

    Article  PubMed  Google Scholar 

  10. Furfine ES, Harmon MF, Paith JE, Knowles RG, Salter M, Kiff RJ, Duffy C, Hazelwood R, Oplinger JA, Garvey EP (1994) Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-l-thiocitrulline and S-ethyl-l-thiocitrulline. J Biol Chem 269:26677–26683. doi:10.1074/jbc.273.15.888

    PubMed  CAS  Google Scholar 

  11. Gingerich S, Krukoff TL (2008) Activation of ERbeta increases levels of phosphorylated nNOS and NO production through a Src/PI3K/Akt-dependent pathway in hypothalamic neurons. Neuropharmacology 55:878–885. doi:0.1016/j.neuropharm.2008.06.058

    Article  PubMed  CAS  Google Scholar 

  12. Goodyear LJ (2008) The exercise pill—too good to be true? N Engl J Med 359:1842–1844. doi:10.1056/NEJMcibr0806723

    Article  PubMed  CAS  Google Scholar 

  13. Guggilam A, Cardinale JP, Mariappan N, Sriramula S, Haque M, Francis J (2011) Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res Cardiol 106:273–286. doi:10.1007/s00395-010-0146-8

    Article  PubMed  CAS  Google Scholar 

  14. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158. doi:10.1161/01.CIR.0000074229.93804.5C

    Article  PubMed  CAS  Google Scholar 

  15. Hammond HK, Ransnas LA, Insel PA (1988) Noncoordinate regulation of cardiac Gs protein and beta-adrenergic receptors by a physiological stimulus, chronic dynamic exercise. J Clin Invest 82:2168–2171. doi:10.1172/JCI113840

    Article  PubMed  CAS  Google Scholar 

  16. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  17. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87:146–152. doi:10.1161/01.RES.87.2.146

    Article  PubMed  CAS  Google Scholar 

  18. Hoydal MA, Wisloff U, Kemi OJ, Ellingsen O (2007) Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil 14:753–760. doi:10.1097/HJR.0b013e3281eacef1

    Article  PubMed  Google Scholar 

  19. Husain K (2004) Physical conditioning modulates rat cardiac vascular endothelial growth factor gene expression in nitric oxide-deficient hypertension. Biochem Biophys Res Commun 320:1169–1174. doi:10.1016/j.bbrc.2004.06.058

    Article  PubMed  CAS  Google Scholar 

  20. Janssen PM, Periasamy M (2007) Determinants of frequency-dependent contraction and relaxation of mammalian myocardium. J Mol Cell Cardiol 43:523–531. doi:10.1016/j.yjmcc.2007.08.012

    Article  PubMed  CAS  Google Scholar 

  21. Janssens S, Pokreisz P, Schoonjans L, Pellens M, Vermeersch P, Tjwa M, Jans P, Scherrer-Crosbie M, Picard MH, Szelid Z, Gillijns H, Van de Werf F, Collen D, Bloch KD (2004) Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 94:1256–1262. doi:10.1161/01.RES.0000126497.38281.23

    Article  PubMed  CAS  Google Scholar 

  22. Kavazis AN, Alvarez S, Talbert E, Lee Y, Powers SK (2009) Exercise training induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins. Am J Physiol Heart Circ Physiol 297:H144–H152. doi:10.1152/ajpheart.01278.2008

    Article  PubMed  CAS  Google Scholar 

  23. Kemi OJ, Ceci M, Condorelli G, Smith GL, Wisloff U (2008) Myocardial sarcoplasmic reticulum Ca2+ ATPase function is increased by aerobic interval training. Eur J Cardiovasc Prev Rehabil 15:145–148. doi:10.1097/HJR.0b013e3282efd4e0

    Article  PubMed  Google Scholar 

  24. Kemi OJ, Ellingsen O, Ceci M, Grimaldi S, Smith GL, Condorelli G, Wisloff U (2007) Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol 43:354–361. doi:10.1016/j.yjmcc.2007.06.013

    Article  PubMed  CAS  Google Scholar 

  25. Kemi OJ, Ellingsen O, Smith GL, Wisloff U (2008) Exercise-induced changes in calcium handling in left ventricular cardiomyocytes. Front Biosci 13:356–368. doi:10.2741/2685

    Article  PubMed  CAS  Google Scholar 

  26. Kemi OJ, Haram PM, Loennechen JP, Osnes JB, Skomedal T, Wisloff U, Ellingsen O (2005) Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 67:161–172. doi:10.1016/j.cardiores.2005.03.010

    Article  PubMed  CAS  Google Scholar 

  27. Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SV, Tejani AD, Li D, Berkowitz DE, Hare JM (2004) Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci USA 101:15944–15948. doi:10.1073/pnas.0404136101

    Article  PubMed  CAS  Google Scholar 

  28. Khan SA, Skaf MW, Harrison RW, Lee K, Minhas KM, Kumar A, Fradley M, Shoukas AA, Berkowitz DE, Hare JM (2003) Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases. Circ Res 92:1322–1329. doi:10.1161/01.RES.0000078171.52542.9E

    Article  PubMed  CAS  Google Scholar 

  29. Kinugawa S, Huang H, Wang Z, Kaminski PM, Wolin MS, Hintze TH (2005) A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ Res 96:355–362. doi:10.1161/01.RES.0000155331.09458.A7

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, Parikh SV, Weiss RM, Chamberlain JS, Moore SA, Campbell KP (2008) Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456:511–515. doi:10.1038/nature07414

    Article  PubMed  CAS  Google Scholar 

  31. Kohr MJ, Traynham CJ, Roof SR, Davis JP, Ziolo MT (2010) cAMP-independent activation of protein kinase A by the peroxynitrite generator SIN-1 elicits positive inotropic effects in cardiomyocytes. J Mol Cell Cardiol 48:645–648. doi:10.1016/j.yjmcc.2010.01.007

    Article  PubMed  CAS  Google Scholar 

  32. Kohr MJ, Wang H, Wheeler DG, Velayutham M, Zweier JL, Ziolo MT (2008) Targeting of phospholamban by peroxynitrite decreases {beta}-adrenergic stimulation in cardiomyocytes. Cardiovasc Res 77:353–361. doi:10.1093/cvr/cvm018

    Article  PubMed  CAS  Google Scholar 

  33. Kokkinos P, Myers J (2010) Exercise and physical activity: clinical outcomes and applications. Circulation 122:1637–1648. doi:10.1161/CIRCULATIONAHA.110.948349

    Article  PubMed  Google Scholar 

  34. Libonati JR, MacDonnell SM (2011) Cardiac beta-adrenergic responsiveness with exercise. Eur J Appl Physiol 111:2735–2741. doi:10.1007/s00421-011-1909-0

    Article  PubMed  CAS  Google Scholar 

  35. Loyer X, Gomez AM, Milliez P, Fernandez-Velasco M, Vangheluwe P, Vinet L, Charue D, Vaudin E, Zhang W, Sainte-Marie Y, Robidel E, Marty I, Mayer B, Jaisser F, Mercadier JJ, Richard S, Shah AM, Benitah JP, Samuel JL, Heymes C (2008) Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation 117:3187–3198. doi:10.1161/CIRCULATIONAHA.107.741702

    Article  PubMed  CAS  Google Scholar 

  36. MacDonnell SM, Kubo H, Crabbe DL, Renna BF, Reger PO, Mohara J, Smithwick LA, Koch WJ, Houser SR, Libonati JR (2005) Improved myocardial beta-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation 111:3420–3428. doi:10.1161/CIRCULATIONAHA.104.505784

    Article  PubMed  CAS  Google Scholar 

  37. Manson JE, Greenland P, LaCroix AZ, Stefanick ML, Mouton CP, Oberman A, Perri MG, Sheps DS, Pettinger MB, Siscovick DS (2002) Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med 347:716–725. doi:10.1056/NEJMoa021067

    Article  PubMed  Google Scholar 

  38. Martin SR, Emanuel K, Sears CE, Zhang YH, Casadei B (2006) Are myocardial eNOS and nNOS involved in the beta-adrenergic and muscarinic regulation of inotropy? A systematic investigation. Cardiovasc Res 70:97–106. doi:10.1016/j.cardiores.2006.02.002

    Article  PubMed  CAS  Google Scholar 

  39. Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE, Irigoyen MC, Krieger EM, Krieger JE, Negrao CE, Brum PC (2008) Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol 104:103–109. doi:10.1152/japplphysiol.00493.2007

    Article  PubMed  CAS  Google Scholar 

  40. Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15:RA209–RA219

    PubMed  CAS  Google Scholar 

  41. Mole PA (1978) Increased contractile potential of papillary muscles from exercise-trained rat hearts. Am J Physiol 234:H421–H425

    PubMed  CAS  Google Scholar 

  42. Neumann T, Ravens U, Heusch G (1998) Characterization of excitation-contraction coupling in conscious dogs with pacing-induced heart failure. Cardiovasc Res 37:456–466. doi:10.1016/S0008-6363(97)00246-0

    Article  PubMed  CAS  Google Scholar 

  43. Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Paolocci N, Kass DA, Barouch LA (2012) Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol 59:1979–1987. doi:10.1016/j.jacc.2011.12.046

    Article  PubMed  CAS  Google Scholar 

  44. Post H, Schulz R, Gres P, Heusch G (2001) No involvement of nitric oxide in the limitation of beta-adrenergic inotropic responsiveness during ischemia. Am J Physiol Heart Circ Physiol 281:H2392–H2397

    PubMed  CAS  Google Scholar 

  45. Rassaf T, Poll LW, Brouzos P, Lauer T, Totzeck M, Kleinbongard P, Gharini P, Andersen K, Schulz R, Heusch G, Modder U, Kelm M (2006) Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J 27:1699–1705. doi:10.1093/eurheartj/ehl096

    Article  PubMed  CAS  Google Scholar 

  46. Richter EA, Kiens B, Wojtaszewski JF (2008) Can exercise mimetics substitute for exercise? Cell Metab 8:96–98. doi:10.1016/j.cmet.2008.07.004

    Article  PubMed  CAS  Google Scholar 

  47. Roof SR, Biesiadecki BJ, Davis JP, Janssen PM, Ziolo MT (2012) Effects of increased systolic Ca(2+) and beta-adrenergic stimulation on Ca(2+) transient decline in NOS1 knockout cardiac myocytes. Nitric Oxide 27:242–247. doi:10.1016/j.niox.2012.08.077

    Article  PubMed  CAS  Google Scholar 

  48. Roof SR, Shannon TR, Janssen PM, Ziolo MT (2011) Effects of increased systolic Ca2+ and phospholamban phosphorylation during beta-adrenergic stimulation on Ca2+ transient kinetics in cardiac myocytes. Am J Physiol Heart Circ Physiol 301:H1570–H1578. doi:10.1152/ajpheart.00402.2011

    Article  PubMed  CAS  Google Scholar 

  49. Saraiva RM, Minhas KM, Raju SV, Barouch LA, Pitz E, Schuleri KH, Vandegaer K, Li D, Hare JM (2005) Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 112:3415–3422. doi:10.1161/CIRCULATIONAHA.105.557892

    Article  PubMed  CAS  Google Scholar 

  50. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413. doi:10.1016/j.cardiores.2003.09.019

    Article  PubMed  CAS  Google Scholar 

  51. Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, Casadei B, Chowienczyk P, Shah AM (2009) Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation 119:2656–2662. doi:10.1161/CIRCULATIONAHA.108.822205

    Article  PubMed  CAS  Google Scholar 

  52. Shao CH, Wehrens XH, Wyatt TA, Parbhu S, Rozanski GJ, Patel KP, Bidasee KR (2009) Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. J Appl Physiol 106:1280–1292. doi:10.1152/japplphysiol.91280.2008

    Article  PubMed  CAS  Google Scholar 

  53. Spina RJ, Ogawa T, Coggan AR, Holloszy JO, Ehsani AA (1992) Exercise training improves left ventricular contractile response to beta-adrenergic agonist. J Appl Physiol 72:307–311

    PubMed  CAS  Google Scholar 

  54. Stolen TO, Hoydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum E, Larsen T, Rolim N, Condorelli G, Smith GL, Wisloff U (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105:527–536. doi:10.1161/CIRCRESAHA.109.199810

    Article  PubMed  CAS  Google Scholar 

  55. Takeda N, Dominiak P, Turck D, Rupp H, Jacob R (1985) The influence of endurance training on mechanical catecholamine responsiveness, beta-adrenoceptor density and myosin isoenzyme pattern of rat ventricular myocardium. Basic Res Cardiol 80:88–99. doi:10.1007/BF01906747

    Article  PubMed  CAS  Google Scholar 

  56. Vassilakopoulos T, Deckman G, Kebbewar M, Rallis G, Harfouche R, Hussain SN (2003) Regulation of nitric oxide production in limb and ventilatory muscles during chronic exercise training. Am J Physiol Lung Cell Mol Physiol 284:L452–L457. doi:10.1152/ajplung.00270.2002

    PubMed  CAS  Google Scholar 

  57. Wang H, Bonilla IM, Huang X, He Q, Kohr MJ, Carnes CA, Ziolo MT (2012) Prolonged action potential and after depolarizations are not due to changes in potassium currents in NOS3 knockout ventricular myocytes. J Signal Transduct 2012:645721. doi:10.1155/2012/645721

    PubMed  Google Scholar 

  58. Wang H, Kohr MJ, Traynham CJ, Wheeler DG, Janssen PM, Ziolo MT (2008) Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban. Am J Physiol Cell Physiol 294:C1566–C1575. doi:10.1152/ajpcell.00367.2007

    Article  PubMed  CAS  Google Scholar 

  59. Wang H, Kohr MJ, Wheeler DG, Ziolo MT (2008) Endothelial nitric oxide synthase decreases beta-adrenergic responsiveness via inhibition of the L-type Ca2+ current. Am J Physiol Heart Circ Physiol 294:H1473–H1480. doi:10.1152/ajpheart.01249.2007

    Article  PubMed  CAS  Google Scholar 

  60. Wang H, Viatchenko-Karpinski S, Sun J, Gyorke I, Benkusky NA, Kohr MJ, Valdivia HH, Murphy E, Gyorke S, Ziolo MT (2010) Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation. J Physiol 588:2905–2917. doi:10.1113/jphysiol.2010.192617

    Article  PubMed  CAS  Google Scholar 

  61. Wisloff U, Helgerud J, Kemi OJ, Ellingsen O (2001) Intensity-controlled treadmill running in rats: VO(2 max) and cardiac hypertrophy. Am J Physiol Heart Circ Physiol 280:H1301–H1310

    PubMed  CAS  Google Scholar 

  62. Wisloff U, Loennechen JP, Currie S, Smith GL, Ellingsen O (2002) Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res 54:162–174. doi:10.1016/S0008-6363(01)00565-X

    Article  PubMed  CAS  Google Scholar 

  63. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094. doi:10.1161/CIRCULATIONAHA.106.675041

    Article  PubMed  Google Scholar 

  64. Yang KC, Foeger NC, Marionneau C, Jay PY, McMullen JR, Nerbonne JM (2010) Homeostatic regulation of electrical excitability in physiological cardiac hypertrophy. J Physiol 588:5015–5032. doi:10.1113/jphysiol.2010.197418

    Article  PubMed  CAS  Google Scholar 

  65. Zhang YH, Dingle L, Hall R, Casadei B (2009) The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochim Biophys Acta 1787:811–817. doi:10.1016/j.bbabio.2009.03.020

    Article  PubMed  CAS  Google Scholar 

  66. Zhang YH, Zhang MH, Sears CE, Emanuel K, Redwood C, El-Armouche A, Kranias EG, Casadei B (2008) Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice. Circ Res 102:242–249. doi:10.1161/CIRCRESAHA.107.164798

    Article  PubMed  CAS  Google Scholar 

  67. Ziolo MT, Bers DM (2003) The real estate of NOS signaling: location, location, location. Circ Res 92:1279–1281. doi:10.1161/01.RES.0000080783.34092.AF

    Article  PubMed  CAS  Google Scholar 

  68. Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45:625–632. doi:10.1016/j.yjmcc.2008.07.015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (K02HL094692, R01HL079283, M. T. Ziolo).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Ziolo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roof, S.R., Tang, L., Ostler, J.E. et al. Neuronal nitric oxide synthase is indispensable for the cardiac adaptive effects of exercise. Basic Res Cardiol 108, 332 (2013). https://doi.org/10.1007/s00395-013-0332-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0332-6

Keywords

Navigation