Skip to main content

Advertisement

Log in

Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Connexin mimetic peptides (CxMPs), such as Gap26 and Gap27, are known as inhibitors of gap junction channels but evidence is accruing that these peptides also inhibit unapposed/non-junctional hemichannels (HCs) residing in the plasma membrane. We used voltage clamp studies to investigate the effect of Gap26/27 at the single channel level. Such an approach allows unequivocal identification of HC currents by their single channel conductance that is typically ~220 pS for Cx43. In HeLa cells stably transfected with Cx43 (HeLa-Cx43), Gap26/27 peptides inhibited Cx43 HC unitary currents over minutes and increased the voltage threshold for HC opening. By contrast, an elevation of intracellular calcium ([Ca2+]i) to 200–500 nM potentiated the unitary HC current activity and lowered the voltage threshold for HC opening. Interestingly, Gap26/27 inhibited the Ca2+-potentiated HC currents and prevented lowering of the voltage threshold for HC opening. Experiments on isolated pig ventricular cardiomyocytes, which display strong endogenous Cx43 expression, demonstrated voltage-activated unitary currents with biophysical properties of Cx43 HCs that were inhibited by small interfering RNA targeting Cx43. As observed in HeLa-Cx43 cells, HC current activity in ventricular cardiomyocytes was potentiated by [Ca2+]i elevation to 500 nM and was inhibited by Gap26/27. Our results indicate that under pathological conditions, when [Ca2+]i is elevated, Cx43 HC opening is promoted in cardiomyocytes and CxMPs counteract this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105:18770–18775. doi:10.1073/pnas.0800793105

    Article  PubMed  CAS  Google Scholar 

  2. Bao X, Altenberg GA, Reuss L (2004) Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. Am J Physiol Cell Physiol 286:C647–C654. doi:10.1152/ajpcell.00295.2003

    Article  PubMed  CAS  Google Scholar 

  3. Berthoud VM, Beyer EC, Seul KH (2000) Peptide inhibitors of intercellular communication. Am J Physiol Lung Cell Mol Physiol 279:L619–L622

    PubMed  CAS  Google Scholar 

  4. Boitano S, Evans WH (2000) Connexin mimetic peptides reversibly inhibit Ca(2+) signaling through gap junctions in airway cells. Am J Physiol Lung Cell Mol Physiol 279:L623–L630

    PubMed  CAS  Google Scholar 

  5. Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48

    Article  PubMed  CAS  Google Scholar 

  6. Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043. doi:10.1111/j.1471-4159.2004.02947.x

    Article  PubMed  CAS  Google Scholar 

  7. Bukauskas FF, Bukauskiene A, Verselis VK (2002) Conductance and permeability of the residual state of connexin43 gap junction channels. J Gen Physiol 119:171–185

    Article  PubMed  CAS  Google Scholar 

  8. Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662:42–60. doi:10.1016/j.bbamem.2004.01.008

    Article  PubMed  CAS  Google Scholar 

  9. Chaytor AT, Evans WH, Griffith TM (1997) Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol 503(Pt 1):99–110

    Article  PubMed  CAS  Google Scholar 

  10. Clarke TC, Williams OJ, Martin PE, Evans WH (2009) ATP release by cardiac myocytes in a simulated ischaemia model: inhibition by a connexin mimetic and enhancement by an antiarrhythmic peptide. Eur J Pharmacol 605:9–14. doi:10.1016/j.ejphar.2008.12.005

    Article  PubMed  CAS  Google Scholar 

  11. Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393. doi:10.1073/pnas.1434298100

    Article  PubMed  CAS  Google Scholar 

  12. Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500. doi:10.1073/pnas.012589799

    Article  PubMed  CAS  Google Scholar 

  13. Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M (1998) Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18:2520–2537

    PubMed  CAS  Google Scholar 

  14. De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De LG, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L (2011) Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability. J Cereb Blood Flow Metab 31:1942–1957. doi:10.1038/jcbfm.2011.86

    Article  PubMed  Google Scholar 

  15. De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25:34–44. doi:10.1038/sj.emboj.7600908

    Article  PubMed  Google Scholar 

  16. De Vuyst E, Wang N, Decrock E, De Bock M, Vinken M, Van Moorhem M, Lai C, Culot M, Rogiers V, Cecchelli R, Naus CC, Evans WH, Leybaert L (2009) Ca(2+) regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46:176–187. doi:10.1016/j.ceca.2009.07.002

    Article  PubMed  Google Scholar 

  17. Decrock E, DeVuyst E, Vinken M, Van Moorhem M, Vranckx K, Wang N, Van Laeken L, De Bock M, D’Herde K, Lai CP, Rogiers V, Evans WH, Naus CC, Leybaert L (2009) Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ 16:151–163. doi:10.1038/cdd.2008.138

    Article  PubMed  CAS  Google Scholar 

  18. Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817

    Article  PubMed  CAS  Google Scholar 

  19. Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99:1100–1108. doi:10.1161/01.RES.0000250174.31269.70

    Article  PubMed  CAS  Google Scholar 

  20. Evans WH, Boitano S (2001) Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 29:606–612

    Article  PubMed  Google Scholar 

  21. Evans WH, Carlile G, Rahman S, Torok K (1992) Gap junction communication channel: peptides and anti-peptide antibodies as structural probes. Biochem Soc Trans 20:856–861

    PubMed  CAS  Google Scholar 

  22. Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502. doi:10.1146/annurev.bi.65.070196.002355

    Article  PubMed  CAS  Google Scholar 

  23. Harris AL (2002) Voltage-sensing and substate rectification: moving parts of connexin channels. J Gen Physiol 119:165–169

    Article  PubMed  CAS  Google Scholar 

  24. Hawat G, Benderdour M, Rousseau G, Baroudi G (2010) Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflugers Arch 460:583–592. doi:10.1007/s00424-010-0849-6

    Article  PubMed  CAS  Google Scholar 

  25. Hawat G, Helie P, Baroudi G (2012) Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2012.07.008

    PubMed  Google Scholar 

  26. Johansen D, Cruciani V, Sundset R, Ytrehus K, Mikalsen SO (2011) Ischemia induces closure of gap junctional channels and opening of hemichannels in heart-derived cells and tissue. Cell Physiol Biochem 28:103–114. doi:10.1159/000331719

    Article  PubMed  CAS  Google Scholar 

  27. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711. doi:10.1523/JNEUROSCI.5048-07.2008

    Article  PubMed  CAS  Google Scholar 

  28. Karpuk N, Burkovetskaya M, Fritz T, Angle A, Kielian T (2011) Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 31:414–425. doi:10.1523/JNEUROSCI.5247-10.2011

    Article  PubMed  CAS  Google Scholar 

  29. Kienitz MC, Bender K, Dermietzel R, Pott L, Zoidl G (2011) Pannexin 1 constitutes the large conductance cation channel of cardiac myocytes. J Biol Chem 286:290–298. doi:10.1074/jbc.M110.163477

    Article  PubMed  CAS  Google Scholar 

  30. Kim DY, Kam Y, Koo SK, Joe CO (1999) Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J Biol Chem 274:5581–5587

    Article  PubMed  CAS  Google Scholar 

  31. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872. doi:10.1006/jmcc.2000.1220

    Article  PubMed  CAS  Google Scholar 

  32. Lazrak A, Peracchia C (1993) Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells. Biophys J 65:2002–2012. doi:0.1016/S0006-3495(93)81242-6

    Article  PubMed  CAS  Google Scholar 

  33. Lewandowski R, Procida K, Vaidyanathan R, Coombs W, Jalife J, Nielsen MS, Taffet SM, Delmar M (2008) RXP-E: a connexin43-binding peptide that prevents action potential propagation block. Circ Res 103:519–526. doi:10.1161/CIRCRESAHA.108.179069

    Article  PubMed  CAS  Google Scholar 

  34. Li F, Sugishita K, Su Z, Ueda I, Barry WH (2001) Activation of connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33:2145–2155. doi:10.1006/jmcc.2001.1477

    Article  PubMed  CAS  Google Scholar 

  35. Liu F, Arce FT, Ramachandran S, Lal R (2006) Nanomechanics of hemichannel conformations: connexin flexibility underlying channel opening and closing. J Biol Chem 281:23207–23217. doi:10.1074/jbc.M605048200

    Article  PubMed  CAS  Google Scholar 

  36. Martin PE, Wall C, Griffith TM (2005) Effects of connexin-mimetic peptides on gap junction functionality and connexin expression in cultured vascular cells. Br J Pharmacol 144:617–627. doi:10.1038/sj.bjp.0706102

    Article  PubMed  CAS  Google Scholar 

  37. Matsuyama D, Kawahara K (2009) Proliferation of neonatal cardiomyocytes by connexin43 knockdown via synergistic inactivation of p38 MAPK and increased expression of FGF1. Basic Res Cardiol 104:631–642. doi:10.1007/s00395-009-0029-z

    Article  PubMed  CAS  Google Scholar 

  38. O’Carroll SJ, Alkadhi M, Nicholson LF, Green CR (2008) Connexin 43 mimetic peptides reduce swelling, astrogliosis, and neuronal cell death after spinal cord injury. Cell Commun Adhes 15:27–42. doi:10.1080/15419060802014164

    Article  PubMed  Google Scholar 

  39. Orellana JA, Saez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Saez JC (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369–399. doi:10.1089/ars.2008.2130

    Article  PubMed  CAS  Google Scholar 

  40. Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ, Jiang JX, Naus CC, Saez JC, Giaume C (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31:4962–4977. doi:10.1523/JNEUROSCI.6417-10.2011

    Article  PubMed  CAS  Google Scholar 

  41. Oviedo-Orta E, Perreau M, Evans WH, Potolicchio I (2010) Control of the proliferation of activated CD4+ T cells by connexins. J Leukoc Biol 88:79–86. doi:10.1189/jlb.0909613

    Article  PubMed  CAS  Google Scholar 

  42. Palacios-Prado N, Briggs SW, Skeberdis VA, Pranevicius M, Bennett MV, Bukauskas FF (2010) pH-dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions. Proc Natl Acad Sci USA 107:9897–9902. doi:10.1073/pnas.1004552107

    Article  PubMed  CAS  Google Scholar 

  43. Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744. doi:10.1016/j.neuron.2005.04.024

    Article  PubMed  CAS  Google Scholar 

  44. Penuela S, Bhalla R, Nag K, Laird DW (2009) Glycosylation regulates pannexin intermixing and cellular localization. Mol Biol Cell 20:4313–4323. doi:10.1091/mbc.E09-01-0067

    Article  PubMed  CAS  Google Scholar 

  45. Peracchia C (2004) Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662:61–80. doi:10.1016/j.bbamem.2003.10.020

    Article  PubMed  CAS  Google Scholar 

  46. Pollok S, Pfeiffer AC, Lobmann R, Wright CS, Moll I, Martin PE, Brandner JM (2011) Connexin 43 mimetic peptide Gap27 reveals potential differences in the role of Cx43 in wound repair between diabetic and non-diabetic cells. J Cell Mol Med 15:861–873. doi:10.1111/j.1582-4934.2010.01057.x

    Article  PubMed  CAS  Google Scholar 

  47. Ponsaerts R, De Vuyst E, Retamal M, D’hondt C, Vermeire D, Wang N, De Smedt H, Zimmermann P, Himpens B, Vereecke J, Leybaert L, Bultynck G (2010) Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J 24:4378–4395. doi:10.1096/fj.09-153007

    Article  PubMed  CAS  Google Scholar 

  48. Ramanan SV, Brink PR (1993) Multichannel recordings from membranes which contain gap junctions. II. Substates and conductance shifts. Biophys J 65:1387–1395. doi:10.1016/S0006-3495(93)81193-7

    Article  PubMed  CAS  Google Scholar 

  49. Retamal MA, Cortes CJ, Reuss L, Bennett MV, Saez JC (2006) S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475–4480. doi:10.1073/pnas.0511118103

    Article  PubMed  CAS  Google Scholar 

  50. Retamal MA, Schalper KA, Shoji KF, Bennett MV, Saez JC (2007) Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci USA 104:8322–8327. doi:10.1073/pnas.0702456104

    Article  PubMed  CAS  Google Scholar 

  51. Rhett JM, Jourdan J, Gourdie RG (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell 22:1516–1528. doi:10.1091/mbc.E10-06-0548

    Article  PubMed  CAS  Google Scholar 

  52. Robertson J, Lang S, Lambert PA, Martin PE (2010) Peptidoglycan derived from Staphylococcus epidermidis induces Connexin43 hemichannel activity with consequences on the innate immune response in endothelial cells. Biochem J 432:133–143. doi:10.1042/BJ20091753

    Article  PubMed  CAS  Google Scholar 

  53. Romanov RA, Rogachevskaja OA, Khokhlov AA, Kolesnikov SS (2008) Voltage dependence of ATP secretion in mammalian taste cells. J Gen Physiol 132:731–744. doi:10.1085/jgp.200810108

    Article  PubMed  CAS  Google Scholar 

  54. Ruiz-Meana M, Rodriguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Dorado D (2008) Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia–reperfusion injury. Cardiovasc Res 77:325–333. doi:10.1093/cvr/cvm062

    Article  PubMed  CAS  Google Scholar 

  55. Samoilova M, Wentlandt K, Adamchik Y, Velumian AA, Carlen PL (2008) Connexin 43 mimetic peptides inhibit spontaneous epileptiform activity in organotypic hippocampal slice cultures. Exp Neurol 210:762–775. doi:10.1016/j.expneurol.2008.01.005

    Article  PubMed  CAS  Google Scholar 

  56. Sanchez HA, Orellana JA, Verselis VK, Saez JC (2009) Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol 297:C665–C678. doi:10.1152/ajpcell.00200.2009

    Article  PubMed  CAS  Google Scholar 

  57. Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martinez AD, Saez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19:3501–3513. doi:10.1091/mbc.E07-12-1240

    Article  PubMed  CAS  Google Scholar 

  58. Schalper KA, Sanchez HA, Lee SC, Altenberg GA, Nathanson MH, Saez JC (2010) Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol 299:C1504–C1515. doi:10.1152/ajpcell.00015.2010

    Article  PubMed  CAS  Google Scholar 

  59. Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266. doi:10.1007/s10741-007-9032-3

    Article  PubMed  CAS  Google Scholar 

  60. Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357. doi:10.1096/fj.02-0975fje

    PubMed  CAS  Google Scholar 

  61. Shintani-Ishida K, Uemura K, Yoshida K (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293:H1714–H1720. doi:10.1152/ajpheart.00022.2007

    Article  PubMed  CAS  Google Scholar 

  62. Silver IA, Erecinska M (1990) Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:837–866

    Article  PubMed  CAS  Google Scholar 

  63. Stankovicova T, Szilard M, De Scheerder I, Sipido KR (2000) M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res 45:952–960

    Article  PubMed  CAS  Google Scholar 

  64. Thibault O, Porter NM, Landfield PW (1993) Low Ba2+ and Ca2+ induce a sustained high probability of repolarization openings of L-type Ca2+ channels in hippocampal neurons: physiological implications. Proc Natl Acad Sci USA 90:11792–11796

    Article  PubMed  CAS  Google Scholar 

  65. Torok K, Stauffer K, Evans WH (1997) Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem J 326(Pt 2):479–483

    PubMed  CAS  Google Scholar 

  66. Verma V, Hallett MB, Leybaert L, Martin PE, Evans WH (2009) Perturbing plasma membrane hemichannels attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins. Eur J Cell Biol 88:79–90. doi:10.1016/j.ejcb.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  67. Verselis VK, Srinivas M (2008) Divalent cations regulate connexin hemichannels by modulating intrinsic voltage-dependent gating. J Gen Physiol. doi:10.1085/jgp.200810029

    PubMed  Google Scholar 

  68. Wang HZ, Day N, Valcic M, Hsieh K, Serels S, Brink PR, Christ GJ (2001) Intercellular communication in cultured human vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C75–C88

    PubMed  CAS  Google Scholar 

  69. Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293:C1112–C1119. doi:10.1152/ajpcell.00097.2007

    Article  PubMed  CAS  Google Scholar 

  70. Warner A, Clements DK, Parikh S, Evans WH, DeHaan RL (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 488(Pt 3):721–728

    PubMed  CAS  Google Scholar 

  71. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737. doi:10.1515/BC.2002.076

    Article  PubMed  CAS  Google Scholar 

  72. Wright CS, van Steensel MA, Hodgins MB, Martin PE (2009) Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro. Wound Repair Regen 17:240–249. doi:10.1111/j.1524-475X.2009.00471.x

    Article  PubMed  Google Scholar 

  73. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  74. Zhang Y, Hartmann HA, Satin J (1999) Glycosylation influences voltage-dependent gating of cardiac and skeletal muscle sodium channels. J Membr Biol 171:195–207

    Article  PubMed  CAS  Google Scholar 

  75. Zhou Y, Yang W, Lurtz MM, Ye Y, Huang Y, Lee HW, Chen Y, Louis CF, Yang JJ (2007) Identification of the calmodulin binding domain of connexin 43. J Biol Chem 282:35005–35017. doi:10.1074/jbc.M707728200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Interuniversity Attraction Poles Program (Belgian Science Policy Project P6/31 and P7/10 to K.R. Sipido and L. Leybaert), the Fund for Scientific Research Flanders (FWO Grant Numbers G.0140.08, 3G.0134.09 and G.0298.11 to L. Leybaert) and supported by NIH Grants (R01NS072238 and RO1HL084464 to F.F. Bukauskas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Leybaert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,085 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., De Bock, M., Antoons, G. et al. Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol 107, 304 (2012). https://doi.org/10.1007/s00395-012-0304-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0304-2

Keywords

Navigation