Skip to main content

Advertisement

Log in

The associations of gut microbiota and fecal short-chain fatty acids with bone mass were largely mediated by weight status: a cross-sectional study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

We aimed to investigate whether the gut microbiota and fecal short-chain fatty acids (SCFAs) are associated with bone mass in healthy children aged 6–9 years.

Methods

In this study, 236 healthy children including 145 boys and 91 girls were enrolled. 16S rRNA gene sequencing was used to characterize the composition of their gut microbiota. Total and 10 subtypes of SCFAs in the fecal samples were determined by high-performance liquid chromatography. Dual X-ray absorptiometry was used to measure the bone mineral density (BMD) and bone mineral content (BMC) for total body (TB) and total body less head (TBLH). Z score of TBLH BMD was calculated based on the recommended reference.

Results

Four gut microbiota principal components (PCs) were identified by the compositional principal component analysis at the genus level. After adjustment of covariates and controlling for the false discovery rate, multiple linear regression analysis showed that PC3 score (positive loadings on genera Lachnoclostridium and Blautia) was significantly negatively associated with TBLH BMD/BMC/Z score, TB BMC and pelvic BMD (β: − 0.207 to − 0.108, p: 0.002–0.048), whereas fecal total and several subtypes of SCFAs were correlated positively with TBLH BMD/Z score and pelvic BMD (β: 0.118–0.174, p: 0.038–0.048). However, these associations disappeared after additional adjustment for body weight. Mediation analysis suggested that body weight significantly mediated 60.4% and 78.0% of the estimated association of PC3 score and SCFAs with TBLH BMD Z score, respectively.

Conclusions

The associations of gut microbiota composition and fecal SCFA concentrations with bone mass in children were largely mediated by body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The sequencing data that support the findings of this study has been made publicly available at the NIH National Center for Biotechnology Information Sequence Read Archive (SRA) with BioProject ID PRJNA640436. Supplementary information is available for this paper.

References

  1. Arnald C, Christiansen C, Cummings S, Fleisch H, Gennari C, Kanis J (1993) Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 94:646–650. https://doi.org/10.1016/0002-9343(93)90218-e

    Article  Google Scholar 

  2. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 14(10):1672–1679. https://doi.org/10.1359/jbmr.1999.14.10.1672

    Article  PubMed  CAS  Google Scholar 

  3. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73(3):555–563. https://doi.org/10.1210/jcem-73-3-555

    Article  PubMed  CAS  Google Scholar 

  4. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  5. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet (London, England) 341(8837):72–75. https://doi.org/10.1016/0140-6736(93)92555-8

    Article  CAS  Google Scholar 

  6. Behera J, Ison J, Tyagi SC, Tyagi N (2020) The role of gut microbiota in bone homeostasis. Bone 135:115317. https://doi.org/10.1016/j.bone.2020.115317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yan J, Takakura A, Zandi-Nejad K, Charles JF (2018) Mechanisms of gut microbiota-mediated bone remodeling. Gut Microbes 9(1):84–92. https://doi.org/10.1080/19490976.2017.1371893

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J, Lu Y, Wang Y, Ren X, Han J (2018) The impact of the intestinal microbiome on bone health. Intractable Rare Dis Res 7(3):148–155. https://doi.org/10.5582/irdr.2018.01055

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lucas S, Omata Y, Hofmann J, Bottcher M, Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B, Kronke G, Herrmann M, Mougiakakos D, Strowig T, Schett G, Zaiss MM (2018) Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 9(1):55. https://doi.org/10.1038/s41467-017-02490-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang J, Wang Y, Gao W, Wang B, Zhao H, Zeng Y, Ji Y, Hao D (2017) Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. Peer J 5:e3450. https://doi.org/10.7717/peerj.3450

    Article  PubMed  PubMed Central  Google Scholar 

  11. Das M, Cronin O, Keohane DM, Cormac EM, Nugent H, Nugent M, Molloy C, O’Toole PW, Shanahan F, Molloy MG, Jeffery IB (2019) Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology (Oxford) 58(12):2295–2304. https://doi.org/10.1093/rheumatology/kez302

    Article  Google Scholar 

  12. Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao L, Li X, Zeng J, Wang Q (2019) Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan. China Osteoporos Int 30(5):1003–1013. https://doi.org/10.1007/s00198-019-04855-5

    Article  PubMed  CAS  Google Scholar 

  13. Cheng S, Qi X, Ma M, Zhang L, Cheng B, Liang C, Liu L, Li P, Kafle OP, Wen Y, Zhang F (2020) Assessing the relationship between gut microbiota and bone mineral density. Front Genet 11:6–6. https://doi.org/10.3389/fgene.2020.00006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen YC, Greenbaum J, Shen H, Deng HW (2017) Association between gut microbiota and bone health: potential mechanisms and prospective. J Clin Endocrinol Metab 102(10):3635–3646. https://doi.org/10.1210/jc.2017-00513

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sommer F, Bäckhed F (2013) The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 11(4):227–238. https://doi.org/10.1038/nrmicro2974

    Article  PubMed  CAS  Google Scholar 

  16. Fiebiger U, Bereswill S, Heimesaat MM (2016) Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur J Microbiol Immunol (Bp) 6(4):253–271. https://doi.org/10.1556/1886.2016.00036

    Article  CAS  Google Scholar 

  17. Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, Watzl B (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26:26164–26164. https://doi.org/10.3402/mehd.v26.26164

    Article  PubMed  CAS  Google Scholar 

  18. Iwaniec UT, Turner RT (2016) Influence of body weight on bone mass, architecture and turnover. J Endocrinol 230(3):R115-130. https://doi.org/10.1530/JOE-16-0089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wei Y, Liang J, Su Y, Wang J, Amakye WK, Pan J, Chu X, Ma B, Song Y, Li Y, Mao L, Zhang Z (2020) The associations of the gut microbiome composition and short-chain fatty acid concentrations with body fat distribution in children. Clin Nutr. https://doi.org/10.1016/j.clnu.2020.11.014

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee CJ, Sears CL, Maruthur N (2020) Gut microbiome and its role in obesity and insulin resistance. Ann N Y Acad Sci 1461(1):37–52. https://doi.org/10.1111/nyas.14107

    Article  PubMed  Google Scholar 

  21. Liang J, Chen F, Fang G, Zhang X, Li Y, Ma B, Lin S, Pan J, Zhang Z (2020) Relationship between plasma copper concentration and body fat distribution in children in China: a cross-sectional study. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02105-y

    Article  PubMed  Google Scholar 

  22. Liu J, Wang L, Sun J, Liu G, Yan W, Xi B, Xiong F, Ding W, Huang G, Heymsfield S, Mi J (2017) Bone mineral density reference standards for Chinese children aged 3–18: cross-sectional results of the 2013–2015 China Child and Adolescent Cardiovascular Health (CCACH) Study. BMJ Open 7(5):e014542. https://doi.org/10.1136/bmjopen-2016-014542

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ma B, Liang J, Dai M, Wang J, Luo J, Zhang Z, Jing J (2019) Altered gut microbiota in chinese children with autism spectrum disorders. Front Cell Infect Microbiol 9:40. https://doi.org/10.3389/fcimb.2019.00040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Fugmann M, Breier M, Rottenkolber M, Banning F, Ferrari U, Sacco V, Grallert H, Parhofer KG, Seissler J, Clavel T, Lechner A (2015) The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci Rep 5:13212. https://doi.org/10.1038/srep13212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol 8:2224. https://doi.org/10.3389/fmicb.2017.02224

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Pan J, Chen H, Li Y, Amakye WK, Liang J, Ma B, Chu X, Mao L, Zhang Z (2019) Fecal short-chain fatty acids levels were not associated with autism spectrum disorders in chinese children: a case-control study. Front Neurosci 13:1216. https://doi.org/10.3389/fnins.2019.01216

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Wang Y, Pan X (2009) China food composition table. Peking University Medical Press

    Google Scholar 

  28. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS (2011) 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43(8):1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12

    Article  PubMed  Google Scholar 

  29. Liang J, Chen Y, Zhang J, Ma B, Hu Y, Liu Y, Lin S, Zhang Z, Song Y (2020) Associations of weight-adjusted body fat and fat distribution with bone mineral density in chinese children aged 6–10 years. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17051763

    Article  PubMed  PubMed Central  Google Scholar 

  30. Duran I, Martakis K, Hamacher S, Stark C, Semler O, Schoenau E (2018) Are there effects of age, gender, height, and body fat on the functional muscle-bone unit in children and adults? Osteoporos Int 29(5):1069–1079. https://doi.org/10.1007/s00198-018-4401-4

    Article  PubMed  CAS  Google Scholar 

  31. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K (2014) Mediation: R package for causal mediation analysis. J Stat Softw 59(5):1–39 https://doi.org/10.18637/jss.v059.i05

    Article  Google Scholar 

  32. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57(1):289–300

    Google Scholar 

  33. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27(6):1357–1367. https://doi.org/10.1002/jbmr.1588

    Article  PubMed  CAS  Google Scholar 

  34. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R (2016) Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126(6):2049–2063. https://doi.org/10.1172/Jci86062

    Article  PubMed  PubMed Central  Google Scholar 

  35. Whisner CM, Castillo LF (2018) Prebiotics, bone and mineral metabolism. Calcif Tissue Int 102(4):443–479. https://doi.org/10.1007/s00223-017-0339-3

    Article  PubMed  CAS  Google Scholar 

  36. Ni J-J, Yang X-L, Zhang H, Xu Q, Wei X-T, Feng G-J, Zhao M, Pei Y-F, Zhang L (2021) Assessing causal relationship from gut microbiota to heel bone mineral density. Bone 143: https://doi.org/10.1016/j.bone.2020.115652

    Article  PubMed  CAS  Google Scholar 

  37. Ali T, Lam D, Bronze MS, Humphrey MB (2009) Osteoporosis in inflammatory bowel disease. Am J Med 122(7):599–604. https://doi.org/10.1016/j.amjmed.2009.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89(12):1333–1348. https://doi.org/10.1177/0022034510377791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L (2010) Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem 58(16):8952–8957. https://doi.org/10.1021/jf904086d

    Article  PubMed  CAS  Google Scholar 

  40. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82(2):471–476. https://doi.org/10.1093/ajcn.82.2.471

    Article  PubMed  CAS  Google Scholar 

  41. Bonewald L (2019) Use it or lose it to age: a review of bone and muscle communication. Bone 120:212–218. https://doi.org/10.1016/j.bone.2018.11.002

    Article  PubMed  Google Scholar 

  42. Greco EA, Lenzi A, Migliaccio S (2015) The obesity of bone. Ther Adv Endocrinol Metab 6(6):273–286. https://doi.org/10.1177/2042018815611004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang ZQ, Ma XM, Huang ZW, Yang XG, Chen YM, Su YX (2014) Effects of milk salt supplementation on bone mineral gain in pubertal Chinese adolescents: a 2-year randomized, double-blind, controlled, dose-response trial. Bone 65:69–76. https://doi.org/10.1016/j.bone.2014.05.007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the study participants. We want to thank Huanchang Yan, Yuting Hao, Yongxin Chen, Jiahua Zhang, Wenyi Guan, Ye Tong, Zhicong Zeng and Gaopei Huang for their help in sample collection.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81973045) and Natural Science Foundation of Guangdong Province, China (Grant No. 2018A0303130222).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: ZQZ and ZC. Collection of the data: FYC, YHW, DFX, JW, WKA and LJP. Analysis: FYC and YHW, QZW provided critical comments during the manuscript revision. Drafting of the paper: FYC and ZQZ. All authors read, revised, and approved the final draft.

Corresponding authors

Correspondence to Zhuang Cui or Zheqing Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The present study was approved by the Ethical Review Board of Public Health at Sun Yat-sen University (201549) and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The parents or legal guardians of all participants provided written informed consent prior to enrollment.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Wei, Q., Xu, D. et al. The associations of gut microbiota and fecal short-chain fatty acids with bone mass were largely mediated by weight status: a cross-sectional study. Eur J Nutr 60, 4505–4517 (2021). https://doi.org/10.1007/s00394-021-02597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02597-x

Keywords

Navigation