Skip to main content

Advertisement

Log in

The in vivo antineoplastic and therapeutic efficacy of troxerutin on rat preneoplastic liver: biochemical, histological and cellular aspects

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Troxerutin (TXER), a trihydroxyethylated derivative of the natural bioflavonoid rutin, abundantly found in tea, various fruits and vegetables, is known to exhibit ample pharmacological properties. In the present investigation, we examined the antineoplastic, therapeutic efficacy and furthermore the possible mechanisms of action of TXER against NAFLD/NASH progression to hepatocarcinogenesis.

Methods

The effect of TXER (12.5, 25 or 50 mg/kg b.w/day) was evaluated on the nitrosodiethylamine (NDEA) model of hepatocarcinogenesis in rats, after 16 weeks of oral treatment, with special focus on liver specific enzymes, xenobiotic metabolizing enzymes, antioxidant status, lipid peroxidation profile, DNA damage, fibrosis, cell proliferation and inflammatory status.

Results

Administration of TXER to hepatocellular carcinoma-bearing rats restored the enzyme activities and the hepatic architecture. Furthermore, TXER significantly curtailed NDEA-induced DNA damage, cell proliferation, inflammation, fibrosis and hepatic hyperplasia.

Conclusion

This study provides the evidence that troxerutin exerts a significant therapeutic effect against liver cancer by modulating liver function enzymes, xenobiotic enzymes, oxidative damage, inhibiting cell proliferation, suppressing inflammatory response and induction of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shang N, Arteaga M, Zaidi A, Stauffer J, Cotler SJ, Zeleznik-le NJ (2015) FAK is required for c-Met/β-catenin-driven hepatocarcinogenesis. Hepatology 61:214–226

    Article  CAS  Google Scholar 

  2. Thomas NS, George K, Namasivayam N (2016) Molecular aspects and chemo-prevention of dimethylaminoazobenzene-induced hepatocar-cinogenesis: a review. Hepatol Res 46:72–88

    Article  CAS  Google Scholar 

  3. Aravalli RN, Steer CJ, Cressman ENK (2008) Molecular mechanisms of hepatocellular carcinoma. Hepatology 48:2047–2063

    Article  CAS  Google Scholar 

  4. Mercer KE, Hennings L, Sharma N, Lai K, Cleves MA, Wynne RA (2014) Alcohol consumption promotes diethylnitrosamine-induced hepatocarcinogenesis in male mice through activation of the wnt/β-catenin signaling pathway. Cancer Prev Res 7:675–686

    Article  CAS  Google Scholar 

  5. Kalra S, Vithalani M, Gulati G, Kulkarni CM, Kadam Y, Pallivathukkal J, Das B, Sahay R, Modi KD (2013) Study of prevalence of nonalcoholic fatty liver disease (NAFLD) in type 2 diabetes patients in India (SPRINT). J Assoc Physicians India 61:448–453

    Google Scholar 

  6. Duseja A (2010) Nonalcoholic fatty liver disease in India—a lot done, yet more required! Indian J Gastroenterol 29:217–225

    Article  Google Scholar 

  7. Dakshayani KB, Subramanian P, Mani-vasagam T, Essa MM (2005) Melatonin modulates the oxidant–antioxidant imbalance during n-nitrosodiethylamine induced hepatocarcino-genesis in rats. J Pharm Pharm Sci 8:316–321

    CAS  Google Scholar 

  8. Amin A, Hamza AA, Bajbouj K, Ashraf SS, Daoud S (2011) Saffron: a potential candidate for a novel anticancer drug against hepatocellular carcinoma. Hepatology 54:857–867

    Article  CAS  Google Scholar 

  9. Malik S, Bhatnagar S, Chaudhary N, Katare DP, Jain SK (2013) DEN + 2-AAF-induced multistep hepatotumorigenesis in Wistar rats: supportive evidence and insights. Protoplasma 250:175–183

    Article  CAS  Google Scholar 

  10. Bralet M, Pichard V, Ferry N (2002) Demonstration of direct lineage between hepatocytes and hepatocellular carcinoma in diethylnitrosamine-treated rats. Hepatology 36:623–630

    Article  Google Scholar 

  11. Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12

    Article  CAS  Google Scholar 

  12. Cristina Marcarini J, Ferreira Tsuboy MS, Cabral Luiz R, Regina Ribeiro L, Beatriz Hoffmann-Campo C, Ségio Mantovani M (2011) Investigation of cytotoxic, apoptosis-inducing, genotoxic and protective effects of the flavonoid rutin in HTC hepatic cells. Exp Toxicol Pathol 63:459–465

    Article  Google Scholar 

  13. Alía M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L (2006) Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr 45:19–28

    Article  Google Scholar 

  14. Maurya DK, Salvi VP, Krishnan Nair CK (2004) Radioprotection of normal tissues in tumor-bearing mice by troxerutin. J Radiat Res 45:221–228

    Article  CAS  Google Scholar 

  15. Vinothkumar R, Kumar RV, Karthikkumar V, Viswanathan P, Kabalimoorthy J, Nalini N (2013) Oral supplementation with troxerutin, modulates lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Environ Toxicol Pharmacol 37:174–184

    Article  Google Scholar 

  16. Khan MS, Devaraj H, Devaraj N (2011) Chrysin abrogates early hepatocarcin-ogenesis and induces apoptosis in N-nitrosodiethylamine-induced preneoplastic nodules in rats. Toxicol Appl Pharmacol 251:85–94

    Article  CAS  Google Scholar 

  17. Schladt L, Wörner W, Setiabudi FOF (1986) Distribution and inducibility of cytosolic epoxide hydrolase in male sprague dawley rats. Biochem Pharmacol 35:3309–3316

    Article  CAS  Google Scholar 

  18. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamate oxaloacetic and glutamate pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  Google Scholar 

  19. Patrick BC, Alan HJ (1972) Serum gamma-glutamyl transpeptidase activity in alcoholism. Clin Chim Acta 39:41–47

    Article  Google Scholar 

  20. Omura T, Sato R (1964) The carbon monoxide binding pigment of the liver microsomes. i. evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  Google Scholar 

  21. Watt KC, Plopper CG, Buckpitt AR (1997) Measurement of cytochrome P4502E1 activity in rat tracheobronchial airways using high-performance liquid chromatography with electrochemical detection. Anal Biochem 248:26–30

    Article  CAS  Google Scholar 

  22. Mihara K, Sato R (1972) Partial purification of cytochrome b5 reductase from rabbit liver microsomes with detergent and its properties. J Biochem 71:725–735

    CAS  Google Scholar 

  23. Omura T, Takesue S (1970) A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem 67:249–257

    Article  CAS  Google Scholar 

  24. Habig WH, Pabst MJ, Jokoby WB (1974) Glutathione S-transferases the first step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  25. Ernster L, Danielson L, Ljunggren M (1962) DT-diaphorse I purification from the soluble fraction of rat liver cytoplasm, and properties. Biochim Biophys Acta 58:171–188

    Article  CAS  Google Scholar 

  26. Isselbacher KJ, Chrabas MF, Quinn R (1962) The solubilization and partial purification of glucuronyl transferase from rabbit liver microsomes. J Biol Chem 237:3033–3036

    CAS  Google Scholar 

  27. Ohkawa H, Ohishi YK (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  28. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipidhydroperoxide in low density lipoprotein. Anal Biochem 202:384–389

    Article  CAS  Google Scholar 

  29. Kakkar PS, Das B, Viswanathan P (1984) A modified spectrophotometeric assay for superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  30. Sinha KA (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  Google Scholar 

  31. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  32. Trere D (2000) AgNOR staining and quantification. Micron 31:127–131

    Article  CAS  Google Scholar 

  33. Ramakrishnan G, Jagan S, Kamaraj S, Anandakumar P, Devaki T (2009) Silymarin attenuated mast cell recruitment thereby decreased the expressions of matrix metalloproteinases-2 and 9 in rat liver carcinogenesis. Invest New Drug 27:233–240

    Article  CAS  Google Scholar 

  34. Lu J, Wu D, Zheng Z, Zheng Y, Hu B, Zhang Z (2011) Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain 134:783–797

    Article  Google Scholar 

  35. Maurya DK, Balakrishnan S, Salvi VP, Krishnan C, Nair K (2005) Protection of cellular DNA from γ-radiation-induced damages and enhancement in DNA repair by troxerutin. Mol Cell Biochem 280:57–68

    Article  CAS  Google Scholar 

  36. Saraswati S, Alhaider AA, Agrawal SS (2013) Anticarcinogenic effect of brucine in diethylnitrosamine initiated and phenobarbital-promoted hepatocarcino-genesis in rats. Chem Biol Interact 206:214–221

    Article  CAS  Google Scholar 

  37. Huang X, Choi Y, Im H, Yarimaga O, Yoon E (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6:756–782

    Article  CAS  Google Scholar 

  38. Janani P, Sivakumari K, Geetha A, Ravisankar B, Parthasarathy C (2010) Chemopreventive effect of bacoside A on Ns-nitrosodiethylamine- induced hepatocarcin-ogenesis in rats. J Cancer Res Clin Oncol 136:759–770

    Article  CAS  Google Scholar 

  39. Ogu CC, Maxa JL (2000). Drug interactions due to cytochrome P450. Proceedings (Baylor University. Medical Center), vol 13, pp 421–423

  40. Hodge RE, Minich DM (2000) Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J Nutr Metab 215:23–27

    Google Scholar 

  41. Paolini M, Pozzetti L, Pedulli GF, Cipollone M, Mesirca R, Cantelli-Forti G (1996) Paramagnetic resonance in detecting carcinogenic risk from cytochrome P450 overexpression. J Investig Med 44:470–473

    CAS  Google Scholar 

  42. Kang JS, Wanibuchi H, Morimura K, Gonzalez FJ, Fukushima S (2007) Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogen-esis in vivo. Cancer Res 67:11141–11146

    Article  CAS  Google Scholar 

  43. Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154:103–116

    Article  CAS  Google Scholar 

  44. Denda A, Endoh T, Nakae D, Konishi Y (1995) Effects of oxidative stress induced by redox-enzyme modulation on rat hepatocarcinogenesis. Toxicol Lett 83:413–417

    Article  Google Scholar 

  45. Aranganathan S, Selvam JP, Sangeetha N, Nalini N (2009) Chemico-biological interactions modulatory efficacy of hesperetin on xenobiotic-metabolizing enzymes during 1,2-dimethyl-hydrazine- induced colon carcinogenesis. Chem Biol Interact 180:254–261

    Article  CAS  Google Scholar 

  46. Niedernhofer LJ, Daniels JS, Rouzer CA, Greene ML (2003) Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem 278:31426–31433

    Article  CAS  Google Scholar 

  47. Langeswaran K, Gowtham S, Perumal S, Revathy R, Periyasamy M (2013) Limonin—a citrus limonoid, establish anticancer potential by stabilizing lipid peroxidation and antioxidant status against N -nitrosodiethylamine induced experimental hepatocellular carcinoma. Biomed Prev Nutr 3:165–171

    Article  Google Scholar 

  48. Borzio M, Trerè D, Borzio F, Ferrari AR, Bruno S, Roncalli M (1998) Hepatocyte proliferation rate is a powerful parameter for predicting hepatocellular carcinoma development in liver cirrhosis. Mol Pathol 51:96–101

    Article  CAS  Google Scholar 

  49. Grizzi F, Franceschini B, Chiriva-internati M, Liu Y, Hermonat PL, Dioguardi N (2003) Mast cells and human hepatocellular carcinoma. World J Gastroentrol 9:1469–1473

    Article  CAS  Google Scholar 

  50. Dyduch G, Kaczmarczyk K, Okon K (2012) Mast cells and cancer: enemies or allies? Pol J Pathol 12:1–7

    Google Scholar 

  51. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33

    Article  CAS  Google Scholar 

  52. Theoharides TC, Cochrane DE (2004) Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 146:1–12

    Article  CAS  Google Scholar 

  53. Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ (2002) Fas enhances fibrogenesis in bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 123:1323–1330

    Article  CAS  Google Scholar 

  54. Mcgee JOD (1977) Collagen deposition in liver disease. Ann Rheum Dis 36:29–37

    Article  Google Scholar 

  55. Fan S, Zhang Z, Zheng Y, Lu J, Wu D, Shan Q (2009) Troxerutin protects the mouse kidney from D -galactose-caused injury through anti-inflammation and anti-oxidation. Int Immunopharmacol 9:91–96

    Article  CAS  Google Scholar 

  56. Zhang Z, Fan S, Zheng Y, Lu J, Wu D, Shan Q (2014) Troxerutin improves hepatic lipid homeostasis by restoring NAD (+) -depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochem Pharmacol 91:74–86

    Article  CAS  Google Scholar 

  57. Garner RC, Hardec J (1989) Biochemistry of chemical carcinogenesis. Plenum Press, New York

    Google Scholar 

  58. Naik A, Košir R, Rozman D (2013) Genomic aspects of NAFLD pathogenesis. Genomics 102:84–95

    Article  CAS  Google Scholar 

  59. Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114:147–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by DST, New Delhi in the form of INSPIRE Junior Research Fellowship to Nisha Susan Thomas is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Namasivayam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, N.S., George, K., Arivalagan, S. et al. The in vivo antineoplastic and therapeutic efficacy of troxerutin on rat preneoplastic liver: biochemical, histological and cellular aspects. Eur J Nutr 56, 2353–2366 (2017). https://doi.org/10.1007/s00394-016-1275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1275-0

Keywords

Navigation